

Problem of the Week Problem C and Solution
 See You No More

Problem

Two boats are travelling away from each other in opposite directions. One boat is travelling east at the constant speed of $8 \mathrm{~km} / \mathrm{h}$ and the other boat is travelling west at a different constant speed.

At one point, the boat travelling east was 200 m east of the boat travelling west, but 15 minutes later they lose sight of each other.

If the visibility at sea that day was 5 km , determine the constant speed of the boat travelling west.

Solution

We will call the boat travelling east Boat A, and the boat travelling west Boat B.
Boat A is travelling at a constant speed of $8 \mathrm{~km} / \mathrm{h}$.
Using the formula, distance $=$ speed \times time, in 15 minutes Boat A will travel $8 \frac{\mathrm{~km}}{\mathrm{~h}} \times \frac{15}{60} \mathrm{~h}=2 \mathrm{~km}$.
The visibility at sea is 5 km . Thus, Boat A and Boat B will be in sight of one another until they are 5 km apart. We are given that Boat A and Boat B are in sight of one another for 15 minutes. Thus, after 15 minutes Boat A and Boat B must be 5 km apart.
Since Boat A and Boat B start out $200 \mathrm{~m}=0.2 \mathrm{~km}$ apart and Boat A travels 2 km in 15 minutes, Boat B must travel $5-0.2-2=2.8 \mathrm{~km}$ in 15 minutes.

Since Boat B travelled 2.8 km in 15 minutes, using the formula speed $=$ distance \div time, Boat B must have been travelling at a speed of $2.8 \mathrm{~km} \div \frac{15}{60} \mathrm{~h}=2.8 \times \frac{60}{15}=11.2 \mathrm{~km} / \mathrm{h}$.
Therefore, Boat B was travelling at a speed of $11.2 \mathrm{~km} / \mathrm{h}$.

