Problem of the Week Problem C and Solution
 A Bigger Triangle

Problem

Naveen drew a right-angled triangle, $\triangle A B C$, with an area of $14 \mathrm{~cm}^{2}$. His brother Anand drew a bigger right-angled triangle, $\triangle D E F$, with side lengths four times the lengths of the sides in $\triangle A B C$. In particular, $D E=4 \times A B, E F=4 \times B C$, and $D F=4 \times A C$. Calculate the area of $\triangle D E F$.

Solution

In $\triangle A B C$, let b represent the length of the base, $B C$, and h represent the length of the height, $A B$. Then the area of $\triangle A B C$ is equal to $\frac{b \times h}{2}$. We know this area is equal to $14 \mathrm{~cm}^{2}$, so it follows that $14=\frac{b \times h}{2}$, or $28=b \times h$.

$\triangle D E F$ is formed by multiplying each of the side lengths of $\triangle A B C$ by 4 . So the length of the base of $\triangle D E F$ is equal to $4 \times b$ and the length of the height is equal to $4 \times h$. We can calculate the area of $\triangle D E F$ as follows.

$$
\text { area of } \begin{aligned}
\triangle D E F & =\frac{(4 \times b) \times(4 \times h)}{2} \\
& =\frac{16 \times b \times h}{2} \\
& =\frac{16 \times 28}{2}, \text { since } b \times h=28 \\
& =224
\end{aligned}
$$

Therefore, the area of $\triangle D E F$ is $224 \mathrm{~cm}^{2}$.

EXTENSION:

Notice that $\triangle D E F$ has side lengths that are each 4 times the corresponding side lengths of $\triangle A B C$ and that the area of $\triangle D E F$ ended up being $224=16 \times 14=4^{2} \times$ area of $\triangle A B C$.

Show that if $\triangle D E F$ has side lengths that are each k times the corresponding side lengths of $\triangle A B C$, then the area of $\triangle D E F$ will be equal to k^{2} times the area of $\triangle A B C$.

