

# Problem of the Week Problem C and Solution 

## All Equal

## Problem

Using two cuts, we want to divide the 6 m by 6 m grid shown into three regions of equal area.
One way to do so is by making a horizontal cut through $H$ and a second horizontal cut through $K$. This method of cutting the grid works, but is not very creative.

To make things a little more interesting, we must still make two straight cuts, but each cut must start at point $P$. Each of these two cuts will pass through a point on the outer perimeter of the grid.
Find the length of each cut. Round your answer to one decimal.

## Solution

The area of the entire 6 m by 6 m square grid is $6 \times 6=36 \mathrm{~m}^{2}$. Since the square is divided into three regions of equal area, the area of each region must be $\frac{36}{3}=12 \mathrm{~m}^{2}$.
Consider the line through $P$ that passes through some point on side $Q M$. Let $A$ be the point where this line intersects $Q M$.


Since $\angle P M Q=90^{\circ}, \triangle P M A$ is a right-angled triangle with base $P M=6 \mathrm{~m}$ and height $M A$.
Using the formula area $=\frac{\text { base } \times \text { height }}{2}$, we have area of $\triangle P M A=\frac{6 \times M A}{2}=3 \times M A$.
We need the area of $\triangle P M A$ to be $12 \mathrm{~m}^{2}$. Therefore, $3 \times M A=12$, and so $M A=4 \mathrm{~m}$. Since $H$ is the point on $Q M$ with $M H=4 \mathrm{~m}$, we must have $A=H$. Therefore, one line passes through the point $H$.

Since $\triangle P M A$ is a right-angled triangle, using the Pythagorean Theorem we have

$$
\begin{aligned}
P A^{2} & =P M^{2}+M A^{2} \\
& =6^{2}+4^{2} \\
& =36+16 \\
& =52
\end{aligned}
$$

Therefore, $P A=\sqrt{52} \approx 7.2$, since $P A>0$.

Consider the line through $P$ that passes through some point on side $R Q$. Let $B$ be the point where this line intersects $R Q$.


Since $\angle P R Q=90^{\circ}, \triangle P R B$ is a right-angled triangle with height $P R=6 \mathrm{~m}$ and base $R B$.
Using the formula area $=\frac{\text { base } \times \text { height }}{2}$, we have area of $\triangle P R B=\frac{R B \times 6}{2}=3 \times R B$.
We need the area of $\triangle P R B$ to be $12 \mathrm{~m}^{2}$. Therefore, $3 \times R B=12$, and so $R B=4 \mathrm{~m}$. Since $V$ is the point on $R Q$ with $R V=4 \mathrm{~m}$, we must have $B=V$. Therefore, the other line passes through the point $V$.

Therefore, one line passes through point $H$ and the other passes through point $V$.
Since $\triangle P R B$ is a right-angled triangle, using the Pythagorean Theorem we have

$$
\begin{aligned}
P B^{2} & =P R^{2}+R B^{2} \\
& =6^{2}+4^{2} \\
& =36+16 \\
& =52
\end{aligned}
$$

Therefore, $P B=\sqrt{52} \approx 7.2$, since $P B>0$.
Therefore, the length of each cut is approximately 7.2 m .

## Extension:

Try dividing the grid into three regions of equal area using three cuts. (Each cut does not necessarily need to be to the outer perimeter of the grid.)

