

Problem of the Week Problem C and Solution Just Outside

Problem

In square OABC, points A and C lie on the circumference of a circle with centre O, and B lies outside of the circle. Square OABC has an area of 36 m^2 .

Determine the area of the shaded region inside square OABC and outside the circle with centre O, rounded to two decimal places.

Solution

Since OABC is a square with an area of 36 m^2 , its side length must be 6 m. That is, OA = OC = 6 m.

Since A lies on the circumference of the circle with centre O, the radius of the circle is r = OA = 6 m.

Therefore, the area of the circle is $\pi \times r^2 = \pi \times 6^2 = 36\pi \text{ m}^2$.

Since OABC is a square, $\angle AOC = 90^{\circ}$.

Therefore, the area of sector OAC is $\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4}$ of the area of the circle.

In other words, the area of the sector OAC is $\frac{1}{4} \times 36\pi = 9\pi \text{ m}^2$.

Therefore,

Area of shaded region = Area of square OABC – Area of sector OAC= $36 - 9\pi$ $\approx 7.73 \text{ m}^2$

NOTE: In the problem you were asked to give your answer rounded to two decimal places. However, many times in mathematics we are actually interested in the *exact* answer. In this case, the exact answer would be $(36 - 9\pi)$ m².