Problem of the Week

Problem

For a positive integer n, the product of the integers from 1 to n can be written in abbreviated form as n !, which we read as " n factorial". So,

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 3 \times 2 \times 1
$$

For example,
$6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720$, and $11!=11 \times 10 \times 9 \times \cdots \times 3 \times 2 \times 1=39916800$.
Note that 6 ! ends in one zero and 11 ! ends in two zeros.
Determine the smallest positive integer n such that n ! ends in exactly 1000 zeros.

Solution

When finding a solution to this problem, it may be helpful to work with possible values for n to determine the number of zeros that n ! ends in. One could use a calculator as part of this, but many standard calculators switch to scientific notation around 14!. A trial and error approach could work but it may be very time consuming. Our approach will be more systematic.

A zero is added to the end of a positive integer when we multiply by 10 . Multiplying a number by 10 is the same as multiplying a number by 2 and then by 5 , or by 5 and then by 2 , since $2 \times 5=10$ and $5 \times 2=10$.

So we want n to be the smallest positive integer such that the prime factorization of n ! contains 10005 s and 1000 2s. Every even positive integer has a 2 in its prime factorization and every positive integer that is a multiple of 5 has a 5 in its prime factorization. There are more positive integers less than or equal to n that are multiples of 2 than multiples of 5 . So once we find a positive integer n such that n ! has 10005 s in its prime factorization, we can stop, we know that there will be a sufficient number of 2 s in its prime factorization.
There are $\left\lfloor\frac{n}{5}\right\rfloor$ positive integers less than or equal to n that are divisible by 5 . Note, the notation $\lfloor x\rfloor$ means the floor of x and is the largest integer less than or equal to x. So $\lfloor 4.2\rfloor=4,\lfloor 4.9\rfloor=4$ and $\lfloor 4\rfloor=4$. Also, since $5 \times 1000=5000$, we know that $n \leq 5000$.
Numbers that are divisible by 25 will add an additional factor of 5 , since $25=5 \times 5$. There are $\left\lfloor\frac{n}{25}\right\rfloor$ positive integers less than or equal to n that are divisible by 25 .
Numbers that are divisible by 125 will add an additional factor of 5 , since $125=5 \times 5 \times 5$ and two of the factors have already been counted when we looked at 5 and 25 .
There are $\left\lfloor\frac{n}{125}\right\rfloor$ positive integers less than or equal to n that are divisible by 125 .
Numbers that are divisible by 625 will add an additional factor of 5 , since $625=5 \times 5 \times 5 \times 5$ and three of the factors have already been counted when we looked at 5,25 , and 125 .
There are $\left\lfloor\frac{n}{625}\right\rfloor$ positive integers less than or equal to n that are divisible by 625 .
Numbers that are divisible by 3125 will add an additional factor of 5 , since $3125=5^{5}$ and four of the factors have already been counted when we looked at $5,25,125$, and 625 .

There are $\left\lfloor\frac{n}{3125}\right\rfloor$ positive integers less than or equal to n that are divisible by 3125 .
The next power of 5 to consider is $5^{6}=15625$. But since $n \leq 5000$, we do not need to consider this power of 5 or any larger power.
Thus, we know that n must satisfy the equation

$$
\left\lfloor\frac{n}{5}\right\rfloor+\left\lfloor\frac{n}{25}\right\rfloor+\left\lfloor\frac{n}{125}\right\rfloor+\left\lfloor\frac{n}{625}\right\rfloor+\left\lfloor\frac{n}{3125}\right\rfloor=1000
$$

Let's ignore the floor function. We know that n is going to be close to satisfying

$$
\begin{aligned}
\frac{n}{5}+\frac{n}{25}+\frac{n}{125}+\frac{n}{625}+\frac{n}{3125} & =1000 \\
\frac{625 n}{3125}+\frac{125 n}{3125}+\frac{25 n}{3125}+\frac{5 n}{3125}+\frac{n}{3125} & =1000 \\
\frac{781}{3125} n & =1000 \\
n & =\frac{1000 \times 3125}{781} \\
n & \approx 4001.2
\end{aligned}
$$

The number of zeros at the end of 4001 ! is equal to

$$
\begin{aligned}
& \left\lfloor\frac{4001}{5}\right\rfloor+\left\lfloor\frac{4001}{25}\right\rfloor+\left\lfloor\frac{4001}{125}\right\rfloor+\left\lfloor\frac{4001}{625}\right\rfloor+\left\lfloor\frac{4001}{3125}\right\rfloor \\
& =\lfloor 800.2\rfloor+\lfloor 160.04\rfloor+\lfloor 32.008\rfloor+\lfloor 6.4016\rfloor+\lfloor 1.28032\rfloor \\
& =800+160+32+6+1 \\
& =999
\end{aligned}
$$

Therefore, the number 4001! ends in 999 zeros. We need one more factor of 5 in order to have 1000 zeros at the end. The first integer after 4001 that is divisible by 5 is 4005 .

Therefore, 4005 is the smallest positive integer such that 4005 ! ends in 1000 zeros.
Indeed, we can check. The number of zeros at the end of 4004 ! is equal to the number of 5 s in its prime factorization, which is equal to

$$
\begin{aligned}
& \left\lfloor\frac{4004}{5}\right\rfloor+\left\lfloor\frac{4004}{25}\right\rfloor+\left\lfloor\frac{4004}{125}\right\rfloor+\left\lfloor\frac{4004}{625}\right\rfloor+\left\lfloor\frac{4004}{3125}\right\rfloor \\
& =\lfloor 800.8\rfloor+\lfloor 160.16\rfloor+\lfloor 32.032\rfloor+\lfloor 6.4064\rfloor+\lfloor 1.28128\rfloor \\
& =800+160+32+6+1 \\
& =999
\end{aligned}
$$

The number of zeros at the end of 4005 ! is equal to the number of 5 s in its prime factorization, which is equal to

$$
\begin{aligned}
& \left\lfloor\frac{4005}{5}\right\rfloor+\left\lfloor\frac{4005}{25}\right\rfloor+\left\lfloor\frac{4005}{125}\right\rfloor+\left\lfloor\frac{4005}{625}\right\rfloor+\left\lfloor\frac{4005}{3125}\right\rfloor \\
& =\lfloor 801\rfloor+\lfloor 160.2\rfloor+\lfloor 32.04\rfloor+\lfloor 6.408\rfloor+\lfloor 1.2816\rfloor \\
& =801+160+32+6+1 \\
& =1000
\end{aligned}
$$

