Problem of the Week Problem E

A Lot of Zeros

For a positive integer n, the product of the integers from 1 to n can be written in abbreviated form as n !, which we read as " n factorial". So,

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 3 \times 2 \times 1
$$

For example,
$6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720$, and
$11!=11 \times 10 \times 9 \times \cdots \times 3 \times 2 \times 1=39916800$.
Note that 6 ! ends in one zero and 11 ! ends in two zeros.
Determine the smallest positive integer n such that n ! ends in exactly 1000 zeros.

