

Problem of the Week Problem E and Solution Only One

Problem

A circle with centre O and radius 4 has points A and B on its circumference such that $\angle A O B=90^{\circ}$.

Another circle with diameter $A B$ is drawn such that O lies on its circumference.
Find the area of the shaded region, which is the area inside one circle or the other circle, but not both.

Solution

Let A_{1} be the region inside the larger circle but outside the smaller circle.
Let A_{2} be the region inside the smaller circle but outside the larger circle.
Let A_{3} be the region inside sector $A O B$ but outside of $\triangle A O B$.
We need to calculate $A_{1}+A_{2}$.

First, we will calculate A_{3}.
Since $\angle A O B=90^{\circ}$, the area of sector $A O B$ is $\frac{90}{360}=\frac{1}{4}$ the area of the larger circle.
That is, the area of sector $A O B$ is $\frac{1}{4} \times \pi(4)^{2}=4 \pi$.
The area of $\triangle A O B$ is $\frac{1}{2}(O A)(O B)=\frac{1}{2}(4)(4)=8$.
Therefore, $A_{3}=$ area of sector $A O B-$ area of $\triangle A O B=(4 \pi-8)$.
Next we will calculate A_{2}.
Since $\angle A O B=90^{\circ}$, the Pythagorean theorem tells us $A B^{2}=O A^{2}+O B^{2}=4^{2}+4^{2}=32$.
Therefore, $A B=\sqrt{32}=4 \sqrt{2}$, since $A B>0$.
Since $A B$ is a diameter of the smaller circle, the radius is $\frac{1}{2} A B=\frac{1}{2}(4 \sqrt{2})=2 \sqrt{2}$.
Therefore, $A_{2}+A_{3}=\frac{1}{2}$ (the area of the circle with radius $\left.2 \sqrt{2}\right)=\frac{1}{2} \pi(2 \sqrt{2})^{2}=\frac{1}{2} \pi(8)=4 \pi$.
Therefore, $A_{2}=4 \pi-A_{3}=4 \pi-(4 \pi-8)=8$.
Finally, we will calculate A_{1}.
A_{1} represents the area inside the larger circle which is not in the smaller circle.
The larger circle has radius 4 and area $\pi(4)^{2}=16 \pi$.
The smaller circle has radius $2 \sqrt{2}$ and area $\pi(2 \sqrt{2})^{2}=8 \pi$.

$$
\begin{aligned}
A_{1} & =(\text { area of larger circle })-\frac{1}{2}(\text { area of smaller circle })-A_{3} \\
& =16 \pi-\frac{1}{2}(8 \pi)-(4 \pi-8) \\
& =16 \pi-4 \pi-4 \pi+8 \\
& =8 \pi+8
\end{aligned}
$$

Therefore, the area of the shaded region is equal to $A_{1}+A_{2}=(8 \pi+8)+8=(8 \pi+16)$ units 2.

