

Problem of the Week Problem E and Solution Only One

Problem

A circle with centre O and radius 4 has points A and B on its circumference such that $\angle AOB = 90^{\circ}$.

Another circle with diameter AB is drawn such that O lies on its circumference.

Find the area of the shaded region, which is the area inside one circle or the other circle, but not both.

Solution

Let A_1 be the region inside the larger circle but outside the smaller circle. Let A_2 be the region inside the smaller circle but outside the larger circle. Let A_3 be the region inside sector AOB but outside of $\triangle AOB$. We need to calculate $A_1 + A_2$.

First, we will calculate A_3 .

Since $\angle AOB = 90^\circ$, the area of sector AOB is $\frac{90}{360} = \frac{1}{4}$ the area of the larger circle. That is, the area of sector AOB is $\frac{1}{4} \times \pi(4)^2 = 4\pi$. The area of $\triangle AOB$ is $\frac{1}{2}(OA)(OB) = \frac{1}{2}(4)(4) = 8$. Therefore, A_3 = area of sector AOB – area of $\triangle AOB = (4\pi - 8)$.

Next we will calculate A_2 .

Since $\angle AOB = 90^\circ$, the Pythagorean theorem tells us $AB^2 = OA^2 + OB^2 = 4^2 + 4^2 = 32$. Therefore, $AB = \sqrt{32} = 4\sqrt{2}$, since AB > 0.

Since AB is a diameter of the smaller circle, the radius is $\frac{1}{2}AB = \frac{1}{2}(4\sqrt{2}) = 2\sqrt{2}$. Therefore, $A_2 + A_3 = \frac{1}{2}$ (the area of the circle with radius $2\sqrt{2}$) $= \frac{1}{2}\pi(2\sqrt{2})^2 = \frac{1}{2}\pi(8) = 4\pi$. Therefore, $A_2 = 4\pi - A_3 = 4\pi - (4\pi - 8) = 8$.

Finally, we will calculate A_1 .

 A_1 represents the area inside the larger circle which is not in the smaller circle. The larger circle has radius 4 and area $\pi(4)^2 = 16\pi$. The smaller circle has radius $2\sqrt{2}$ and area $\pi(2\sqrt{2})^2 = 8\pi$.

$$A_1 = (\text{area of larger circle}) - \frac{1}{2}(\text{area of smaller circle}) - A_3$$
$$= 16\pi - \frac{1}{2}(8\pi) - (4\pi - 8)$$
$$= 16\pi - 4\pi - 4\pi + 8$$
$$= 8\pi + 8$$

Therefore, the area of the shaded region is equal to $A_1 + A_2 = (8\pi + 8) + 8 = (8\pi + 16)$ units².