Problem of the Week

$$
g(a)+g(b)=g(a b) \quad \begin{gathered}
\text { Problem E and Solution } \\
\\
\text { Sum Product Function }
\end{gathered}
$$

Problem

A function, g, has $g(2)=5$ and $g(3)=7$. In addition, g has the property that

$$
g(a)+g(b)=g(a b)
$$

for all positive integers a and b.
For example, $g(6)=g(2)+g(3)=12$.
What is the value of $g(648)$?

Solution

We can rewrite $g(648)$ as:

$$
\begin{aligned}
g(648) & =g(2 \cdot 324) \\
& =g(2)+g(324) \\
& =g(2)+g(2 \cdot 162) \\
& =g(2)+g(2)+g(162) \\
& =g(2)+g(2)+g(2 \cdot 81) \\
& =g(2)+g(2)+g(2)+g(81) \\
& =g(2)+g(2)+g(2)+g(3 \cdot 27) \\
& =g(2)+g(2)+g(2)+g(3)+g(27) \\
& =g(2)+g(2)+g(2)+g(3)+g(3 \cdot 9) \\
& =g(2)+g(2)+g(2)+g(3)+g(3)+g(9) \\
& =g(2)+g(2)+g(2)+g(3)+g(3)+g(3 \cdot 3) \\
& =g(2)+g(2)+g(2)+g(3)+g(3)+g(3)+g(3)
\end{aligned}
$$

Therefore, $g(648)=3 g(2)+4 g(3)=3(5)+4(7)=43$.

Note:

While this answers the question, is there actually a function that satisfies the requirements? The answer is yes.
One function that satisfies the requirements of the problem is the function g defined by

$$
g(1)=0 \text { and } g\left(2^{p} 3^{q} r\right)=5 p+7 q
$$

for all non-negative integers p and q and all positive integers r that are not divisible by 2 or by 3. Can you see why this function satisfies the requirements?

