Problem of the Week Problem E and Solution
 A Dividing Point

Problem

A square has vertices at $A(0,0), B(-9,12), C(3,21)$, and $D(12,9)$.
The line ℓ passes through A and intersects $C D$ at point $T(r, s)$, splitting the square so that the area of square $A B C D$ is three times the area of $\triangle A T D$.

Determine the equation of line ℓ.

Solution

Since A has coordinates $(0,0)$ and D has coordinates (12, 9), using the distance formula, we have

$$
\begin{aligned}
A D & =\sqrt{(9-0)^{2}+(12-0)^{2}} \\
& =\sqrt{81+144} \\
& =\sqrt{225} \\
& =15
\end{aligned}
$$

Therefore, the area of square $A B C D$ is equal to $15^{2}=225$.
Since the area of square $A B C D$ is three times the area of $\triangle A T D$, the area of $\triangle A T D$ is equal to $\frac{1}{3}$ of the area of square $A B C D$. Thus, the area of $\triangle A T D=\frac{1}{3}(225)=75$.
Since $A B C D$ is a square, $\angle A D C=90^{\circ}$. Consider $\triangle A T D$. This triangle is a right-angled triangle with base $A D=15$ and height $T D$.
Using the formula area $=\frac{\text { base } \times \text { height }}{2}$,

$$
\text { area of } \begin{aligned}
\triangle A T D & =\frac{A D \times T D}{2} \\
75 & =\frac{15 \times T D}{2} \\
T D & =10
\end{aligned}
$$

From here we present two solutions.

Solution 1

We first calculate the equation of the line that the segment $C D$ lies on.
Since D has coordinates $(12,9)$ and C has coordinates $(3,21)$, this line has slope equal to $\frac{21-9}{3-12}=\frac{12}{-9}=-\frac{4}{3}$.
Since the line has slope $-\frac{4}{3}$ and the point $(3,21)$ lies on the line, we have

$$
\begin{aligned}
\frac{y-21}{x-3} & =-\frac{4}{3} \\
3 y-63 & =-4 x+12 \\
3 y & =-4 x+75 \\
y & =-\frac{4}{3} x+25
\end{aligned}
$$

Since $T(r, s)$ lies on this line, $s=-\frac{4}{3} r+25$.
Using the distance formula, since T has coordinates $(r, s), D$ has coordinates $(12,9)$, and $T D=10$, we have

$$
\begin{aligned}
\sqrt{(r-12)^{2}+(s-9)^{2}} & =10 \\
(r-12)^{2}+(s-9)^{2} & =100
\end{aligned}
$$

Since $s=-\frac{4}{3} r+25$, we have

$$
\begin{aligned}
(r-12)^{2}+\left(\left(-\frac{4}{3} r+25\right)-9\right)^{2} & =100 \\
(r-12)^{2}+\left(-\frac{4}{3} r+16\right)^{2} & =100 \\
r^{2}-24 r+144+\frac{16}{9} r^{2}-\frac{128}{3} r+256 & =100 \\
\frac{25}{9} r^{2}-\frac{200}{3} r+300 & =0 \\
\frac{25}{9}\left(r^{2}-24 r+108\right) & =0 \\
r^{2}-24 r+108 & =0 \\
(r-6)(r-18) & =0 \\
r & =6,18
\end{aligned}
$$

But $r=18$ lies outside the square. Therefore, $r=6$ and $s=-\frac{4}{3}(6)+25=-8+25=17$.
Thus, the line ℓ passes through $A(0,0)$ and $T(6,17)$, has y-intercept 0 , and slope $\frac{17-0}{6-0}=\frac{17}{6}$.
Therefore, the equation of line ℓ is $y=\frac{17}{6} x$, or $17 x-6 y=0$.

Solution 2

Since $T D=10$ and $C D=15$, we have $C T=C D-T D=15-10=5$.
Since $\triangle A T D$ is a right-angled triangle, using the Pythagorean Theorem we have

$$
\begin{aligned}
A T^{2} & =A D^{2}+T D^{2} \\
(r-0)^{2}+(s-0)^{2} & =15^{2}+10^{2} \\
r^{2}+s^{2} & =325
\end{aligned}
$$

Since T has coordinates $(r, s), C$ has coordinates $(3,21)$, and $C T=5$, using the distance formula we have

$$
\begin{aligned}
5 & =\sqrt{(r-3)^{2}+(s-21)^{2}} \\
25 & =r^{2}-6 r+9+s^{2}-42 s+441 \\
6 r+42 s & =r^{2}+s^{2}+425
\end{aligned}
$$

Since $r^{2}+s^{2}=325$, we have

$$
\begin{aligned}
6 r+42 s & =325+425 \\
& =750
\end{aligned}
$$

Again, since T has coordinates $(r, s), D$ has coordinates (12, 9), and $T D=10$, using the distance formula we have

$$
\begin{aligned}
10 & =\sqrt{(r-12)^{2}+(s-9)^{2}} \\
100 & =r^{2}-24 r+144+s^{2}-18 s+81 \\
24 r+18 s & =r^{2}+s^{2}+125
\end{aligned}
$$

Since $r^{2}+s^{2}=325$, we have

$$
\begin{aligned}
24 r+18 s & =325+125 \\
& =450
\end{aligned}
$$

We now have the system of equations

$$
\begin{aligned}
6 r+42 s & =750 \\
24 r+18 s & =450
\end{aligned}
$$

Multiplying the first equation by 4 , we get the system

$$
\begin{aligned}
24 r+168 s & =3000 \\
24 r+18 s & =450
\end{aligned}
$$

Subtracting the second equation from the first gives $150 s=2550$, and $s=17$ follows. Substituting $s=17$ into $6 r+42 s=750$, we obtain $6 r+42(17)=750$, and $r=6$ follows.
Thus, the line ℓ passes through $A(0,0)$ and $T(6,17)$, has y-intercept 0 , and slope $\frac{17-0}{6-0}=\frac{17}{6}$.
Therefore, the equation of line ℓ is $y=\frac{17}{6} x$, or $17 x-6 y=0$.

Extension:

Can you determine the coordinates of point U on $C B$ such that the area of $\triangle A B U$ is equal to the area of $\triangle A T D$? By finding U and T, you will have found two line segments, $A U$ and $A T$, that divide square $A B C D$ into three regions of equal area.

