Problem of the Week Problem E and Solution A Dividing Point

Problem

A square has vertices at A(0,0), B(-9,12), C(3,21), and D(12,9).

The line ℓ passes through A and intersects CD at point T(r, s), splitting the square so that the area of square ABCD is three times the area of $\triangle ATD$.

Determine the equation of line ℓ .

Solution

Since A has coordinates (0,0) and D has coordinates (12,9), using the distance formula, we have

$$AD = \sqrt{(9-0)^2 + (12-0)^2}$$

= $\sqrt{81+144}$
= $\sqrt{225}$
= 15

Therefore, the area of square ABCD is equal to $15^2 = 225$.

Since the area of square ABCD is three times the area of $\triangle ATD$, the area of $\triangle ATD$ is equal to $\frac{1}{3}$ of the area of square ABCD. Thus, the area of $\triangle ATD = \frac{1}{3}(225) = 75$.

Since ABCD is a square, $\angle ADC = 90^{\circ}$. Consider $\triangle ATD$. This triangle is a right-angled triangle with base AD = 15 and height TD.

Using the formula area $=\frac{base \times height}{2}$,

area of
$$\triangle ATD = \frac{AD \times TD}{2}$$

 $75 = \frac{15 \times TD}{2}$
 $TD = 10$

From here we present two solutions.

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Solution 1

We first calculate the equation of the line that the segment CD lies on.

Since D has coordinates (12,9) and C has coordinates (3,21), this line has slope equal to $\frac{21-9}{3-12} = \frac{12}{-9} = -\frac{4}{3}$.

Since the line has slope $-\frac{4}{3}$ and the point (3, 21) lies on the line, we have

$$\frac{y-21}{x-3} = -\frac{4}{3}$$

3y-63 = -4x + 12
3y = -4x + 75
$$y = -\frac{4}{3}x + 25$$

Since T(r, s) lies on this line, $s = -\frac{4}{3}r + 25$.

Using the distance formula, since T has coordinates (r, s), D has coordinates (12, 9), and TD = 10, we have

$$\sqrt{(r-12)^2 + (s-9)^2} = 10$$
$$(r-12)^2 + (s-9)^2 = 100$$

Since $s = -\frac{4}{3}r + 25$, we have

$$(r-12)^{2} + \left(\left(-\frac{4}{3}r+25\right)-9\right)^{2} = 100$$
$$(r-12)^{2} + \left(-\frac{4}{3}r+16\right)^{2} = 100$$
$$r^{2} - 24r + 144 + \frac{16}{9}r^{2} - \frac{128}{3}r + 256 = 100$$
$$\frac{25}{9}r^{2} - \frac{200}{3}r + 300 = 0$$
$$\frac{25}{9}(r^{2} - 24r + 108) = 0$$
$$r^{2} - 24r + 108 = 0$$
$$(r-6)(r-18) = 0$$
$$r = 6, 18$$

But r = 18 lies outside the square. Therefore, r = 6 and $s = -\frac{4}{3}(6) + 25 = -8 + 25 = 17$. Thus, the line ℓ passes through A(0,0) and T(6,17), has y-intercept 0, and slope $\frac{17-0}{6-0} = \frac{17}{6}$. Therefore, the equation of line ℓ is $y = \frac{17}{6}x$, or 17x - 6y = 0.

Solution 2

Since TD = 10 and CD = 15, we have CT = CD - TD = 15 - 10 = 5. Since $\triangle ATD$ is a right-angled triangle, using the Pythagorean Theorem we have

$$AT^{2} = AD^{2} + TD^{2}$$
$$(r-0)^{2} + (s-0)^{2} = 15^{2} + 10^{2}$$
$$r^{2} + s^{2} = 325$$

Since T has coordinates (r, s), C has coordinates (3, 21), and CT = 5, using the distance formula we have

$$5 = \sqrt{(r-3)^2 + (s-21)^2}$$

$$25 = r^2 - 6r + 9 + s^2 - 42s + 441$$

$$6r + 42s = r^2 + s^2 + 425$$

Since $r^2 + s^2 = 325$, we have

$$6r + 42s = 325 + 425$$

= 750

Again, since T has coordinates (r, s), D has coordinates (12, 9), and TD = 10, using the distance formula we have

$$10 = \sqrt{(r-12)^2 + (s-9)^2}$$

$$100 = r^2 - 24r + 144 + s^2 - 18s + 81$$

$$24r + 18s = r^2 + s^2 + 125$$

Since $r^2 + s^2 = 325$, we have

$$24r + 18s = 325 + 125$$

= 450

We now have the system of equations

$$6r + 42s = 750$$

 $24r + 18s = 450$

Multiplying the first equation by 4, we get the system

$$24r + 168s = 3000$$

 $24r + 18s = 450$

Subtracting the second equation from the first gives 150s = 2550, and s = 17 follows. Substituting s = 17 into 6r + 42s = 750, we obtain 6r + 42(17) = 750, and r = 6 follows.

Thus, the line ℓ passes through A(0,0) and T(6,17), has y-intercept 0, and slope $\frac{17-0}{6-0} = \frac{17}{6}$.

Therefore, the equation of line ℓ is $y = \frac{17}{6}x$, or 17x - 6y = 0.

EXTENSION:

Can you determine the coordinates of point U on CB such that the area of $\triangle ABU$ is equal to the area of $\triangle ATD$? By finding U and T, you will have found two line segments, AU and AT, that divide square ABCD into three regions of equal area.