Problem of the Week
 Problem D

How Many Fives?

The product of the first seven positive integers is equal to

$$
7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5040
$$

Mathematicians will write this product as 7 !. This is read as " 7 factorial". So, $7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5040$.

This factorial notation can be used with any positive integer. For example, $11!=11 \times 10 \times 9 \times \cdots \times 3 \times 2 \times 1=39916800$. The three dots " \cdots " represent the product of the integers between 9 and 3 .

Suppose $N=1000$!. That is,

$$
N=1000!=1000 \times 999 \times 998 \times 997 \times \cdots \times 3 \times 2 \times 1
$$

Note that N is divisible by $5,25,125$, and 625 . Each of these factors is a power of 5 . That is, $5=5^{1}, 25=5^{2}, 125=5^{3}$, and $625=5^{4}$.
Determine the largest power of 5 that divides N.

