Problem of the Week Problem C
 Six Zeros

The product of the first seven positive integers is equal to

$$
7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5040
$$

Mathematicians will write this product as 7 !. This is read as " 7 factorial". So, $7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5040$.

This factorial notation can be used with any positive integer. For example, $11!=11 \times 10 \times 9 \times \cdots \times 3 \times 2 \times 1=39916800$. The three dots " \cdots " represent the product of the integers between 9 and 3 .

In general, for a positive integer n, n ! is equal to the product of the positive integers from 1 to n.

Find the smallest positive integer n such that n ! ends in exactly six zeros.

Theme Number Sense

