Problem of the Week
Problem C and Solution
The Missing Pieces

Problem
The following information is known about $\triangle PQR$.

- The point S is on side PR and the point T is on side PQ.
- The distance from P to S is equal to the distance from T to Q.
- The distance from S to R is equal to the distance from P to T.
- $\angle PRQ = 40^\circ$ and $\angle PTS = 20^\circ$.

Determine the value of each of the five other interior angles. That is, determine the values of $\angle RPQ$, $\angle STQ$, $\angle TQR$, $\angle RST$, and $\angle PST$.

Solution
First, we let $\angle RPQ$ measure a°, $\angle STQ$ measure b°, $\angle TQR$ measure c°, $\angle RST$ measure d°, and $\angle PST$ measure e°.

Since $\angle PTQ$ is a straight angle, $20 + b = 180$, and so $b = 160$.

Since $PS = TQ$ and $SR = PT$, it follows that $PS + PR = PT + TQ$, and so $PR = PQ$ and $\triangle PQR$ is isosceles. Therefore $\angle PRQ = \angle PQR$, and so $c = 40$.

Since the angles in a triangle sum to 180°, in $\triangle PQR$,

\[
\begin{align*}
 a + 40 + c &= 180 \\
 a + 40 + 40 &= 180 \\
 a + 80 &= 180 \\
 a &= 100
\end{align*}
\]
Similarly, in $\triangle PST$,

\[
\begin{align*}
 a + e + 20 &= 180 \\
 100 + e + 20 &= 180 \\
 120 + e &= 180 \\
 e &= 60
\end{align*}
\]

Since $\angle PSR$ is a straight angle,

\[
\begin{align*}
 e + d &= 180 \\
 60 + d &= 180 \\
 d &= 120
\end{align*}
\]

We have determined the value of all the other five interior angles.
\[
\begin{align*}
 \angle RPQ &= a^\circ = 100^\circ, \\
 \angle STQ &= b^\circ = 160^\circ, \\
 \angle TQR &= c^\circ = 40^\circ, \\
 \angle RST &= d^\circ = 120^\circ, \text{ and } \\
 \angle PST &= e^\circ = 60^\circ.
\end{align*}
\]