

Problema de la Semana Problema D y Solución Al Otro Lado

Problema

Los puntos A y C son vértices de un cubo con aristas de longitud 2 cm, y B es el punto de intersección de las diagonales de un lado del cubo, como se muestra en la figura. Determina la longitud de CB.

Solución

Solución 1

Denotemos los vértices D, E y G, como se muestra a la derecha.

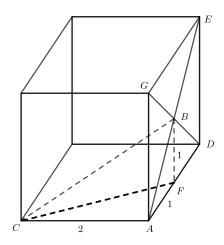
Tracemos una perpendicular desde B al lado AD. Sea F el punto donde la perpendicular intersecta a AD. Tracemos los segmentos BF y CF.

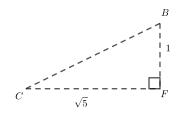
Las caras de un cubo son cuadradas. Las diagonales de un cuadrado se intersectan en el centro del cuadrado. Por lo tanto, BF = 1 y AF = 1.

Observemos que $\triangle CAF$ es un triángulo rectángulo. Por el Teorema de Pitágoras en $\triangle CAF$ tenemos que $CF^2=CA^2+AF^2=2^2+1^2=5$.

Por lo tanto, $CF = \sqrt{5}$, ya que CF > 0.

En $\triangle CFB$ ya sabemos que $CF = \sqrt{5}$ y BF = 1. También sabemos que $\angle CFB = 90^{\circ}$.





Como el problema es tridimensional, puede que no sea tan obvio que $\angle CFB = 90^{\circ}$. Para ayudar a visualizar esto, observemos que CF y BF están sobre caras del cubo que forman un ángulo de 90° .

Por el Teorema de Pitágoras en $\triangle CFB$, $CB^2=CF^2+BF^2=\sqrt{5}^2+1^2=5+1=6$. Como CB>0, concluimos que $CB=\sqrt{6}$.

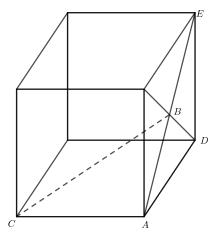
Por lo tanto, la longitud de CB es $\sqrt{6}$ cm.

En la siguiente página mostramos otra solución.

Solución 2

Denotemos los vértices por D y E, como se muestra.

Los lados del cubo son cuadrados. Las diagonales del cuadrado se bisectan entre si. Se sigue que $AB = BE = \frac{1}{2}AE$. Como la cara es un cuadrado, $\angle ADE = 90^\circ$ y $\triangle ADE$ es un triángulo rectángulo. Por el Teorema de Pitágoras en $\triangle ADE$, $AE^2 = AD^2 + DE^2 = 2^2 + 2^2 = 8$. Como AE > 0, entonces $AE = \sqrt{8}$. Por lo tanto $AB = \frac{1}{2}AE = \frac{\sqrt{8}}{2}$.



Como el problema es tridimensional, puede que no sea obvio que $\angle CAB = 90^\circ$. Para ayudar a visualizar esto, observa que $\angle CAD = 90^\circ$ porque la cara del cubo es un cuadrado. Podemos rotar AD alrededor de A en esa cara del cubo, hasta que la imagen de AD se encuentre sobre AB. El ángulo de la esquina no cambiará con esta rotación, y entonces $\angle CAD = \angle CAB = 90^\circ$.

Ahora podemos usar el Teorema de Pitágoras en $\triangle CAB$ para encontrar la longitud de CB.

$$CB^2 = CA^2 + AB^2 = 2^2 + \left(\frac{\sqrt{8}}{2}\right)^2 = 4 + \frac{8}{4} = 4 + 2 = 6$$

Como CB > 0, tenemos que $CB = \sqrt{6}$ cm.

Por lo tanto, la longitud de CB es $\sqrt{6}$ cm.

Nota: Pudimos haber simplificado $AB = \frac{1}{2}AE = \frac{\sqrt{8}}{2}$ y obtener $\sqrt{2}$ de la siguiente forma:

$$\frac{\sqrt{8}}{2} = \frac{\sqrt{4 \times 2}}{2} = \frac{\sqrt{4} \times \sqrt{2}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}.$$

El cálculo de CB habría sido más sencillo usando $AB=\sqrt{2}$. Normalmente, simplificar radicales no es parte de lo que se enseña en la escuela en estos niveles.