Problem of the Week
Problem E and Solution
The Hypotenuse is Aligned

Problem

\(\triangle OAB \) is an isosceles right-angled triangle with
- vertex \(O \) located at the origin; and
- vertices \(A \) and \(B \) located on the line \(2x + 3y - 13 = 0 \) such that \(\angle AOB = 90^\circ \) and \(OA = OB \).

Determine the area of \(\triangle OAB \).

Solution

Solution 1

Let \(B \) have coordinates \((p, q)\). Then the slope of \(OB = \frac{q}{p} \). Since \(\angle AOB = 90^\circ \), then \(OB \perp OA \) and the slope of \(OA \) is the negative reciprocal of the slope of \(OB \). Therefore, the slope of \(OA = \frac{-p}{q} \). Since the triangle is isosceles with \(OA = OB \), it follows that the coordinates of \(A \) are \((-q, p)\). (We can verify this by finding the length of \(OA \) and the length of \(OB \) and showing that both lengths are equal to \(\sqrt{p^2 + q^2} \).)

Since \(B(p, q) \) lies on the line \(2x + 3y - 13 = 0 \), it satisfies the equation of the line. Therefore, \(2p + 3q - 13 = 0 \) \((1) \).

Since \(A(-q, p) \) lies on the line \(2x + 3y - 13 = 0 \), it satisfies the equation of the line. Therefore, \(-2q + 3p - 13 = 0\), or \(3p - 2q - 13 = 0\) \((2) \).

Since we have two equations and two unknowns, we can use elimination to solve for \(p \) and \(q \).

\[
(1) \times 2 : \quad 4p + 6q - 26 = 0 \\
(2) \times 3 : \quad 9p - 6q - 39 = 0
\]

Adding, we obtain :
\[
13p - 65 = 0 \\
p = 5
\]

Substituting in (1) :
\[
10 + 3q - 13 = 0 \\
3q = 3 \\
q = 1
\]

Therefore, the point \(B \) is \((5, 1)\) and the length of \(OB \) is \(\sqrt{5^2 + 1^2} = \sqrt{26} \). Since \(OA = OB \), \(OA = \sqrt{26} \).

\(\triangle AOB \) is a right-angled triangle, so we can use \(OB \) as the base and \(OA \) as the height in the formula for the area of a triangle. Therefore, the area of \(\triangle AOB \) is
\[
\frac{OA \times OB}{2} = \frac{\sqrt{26} \sqrt{26}}{2} = 13.
\]

Therefore, the area of \(\triangle AOB \) is 13 units\(^2\).
Solution 2

By rearranging the given equation for the line, we obtain \(y = \frac{-2x+13}{3} \). Since the points \(A \) and \(B \) are on the line, their coordinates satisfy the equation of the line. If \(A \) has \(x \)-coordinate \(a \), then \(A \) has coordinates \(\left(a, \frac{-2a+13}{3} \right) \). If \(B \) has \(x \)-coordinate \(b \), then \(B \) has coordinates \(\left(b, \frac{-2b+13}{3} \right) \). Since \(\triangle OAB \) is isosceles, we know that \(OA = OB \). Then

\[
OA^2 = OB^2
\]

\[
a^2 + \left(\frac{-2a+13}{3} \right)^2 = b^2 + \left(\frac{-2b+13}{3} \right)^2
\]

Multiplying by 9:

\[
9a^2 + 4a^2 - 52a + 169 = 9b^2 + 4b^2 - 52b + 169
\]

Simplifying:

\[
13a^2 - 52a + 169 = 13b^2 - 52b + 169
\]

Rearranging:

\[
13a^2 - 13b^2 - 52a + 52b = 0
\]

Dividing by 13:

\[
a^2 - b^2 - 4a + 4b = 0
\]

Factoring pairs:

\[(a + b)(a - b) - 4(a - b) = 0\]

Common factoring:

\[(a - b)(a + b - 4) = 0\]

Solving, \(a = b \) or \(a = 4 - b \). Since \(A \) and \(B \) are distinct points, \(a \neq b \). Therefore, \(a = 4 - b \).

We can rewrite \(A \left(a, \frac{-2a+13}{3} \right) \) as \(A \left(4 - b, \frac{-2(4-b)+13}{3} \right) \) which simplifies to \(A \left(4 - b, \frac{2b+5}{3} \right) \).

Since \(\triangle OAB \) is a right-angled triangle, we can use the Pythagorean Theorem, and \(AB^2 = OA^2 + OB^2 \) follows. But \(OA = OB \), so this can be written \(AB^2 = 2OB^2 \).

\[
AB^2 = 2OB^2
\]

\[
(b - (4 - b))^2 + \left(\frac{-2b+13}{3} - \frac{2b+5}{3} \right)^2 = 2 \left[b^2 + \left(\frac{-2b+13}{3} \right)^2 \right]
\]

\[
(2b - 4)^2 + \left(\frac{-4b+8}{3} \right)^2 = 2 \left[b^2 + \frac{4b^2 - 52b + 169}{9} \right]
\]

\[
4b^2 - 16b + 16 + \frac{16b^2 - 64b + 64}{9} = 2b^2 + \frac{8b^2 - 104b + 338}{9}
\]

Multiplying by 9:

\[
36b^2 - 144b + 144 + 16b^2 - 64b + 64 = 18b^2 + 8b^2 - 104b + 338
\]

Simplifying:

\[
52b^2 - 208b + 208 = 26b^2 - 104b + 338
\]

Rearranging:

\[
26b^2 - 104b - 130 = 0
\]

Dividing by 26:

\[
b^2 - 4b - 5 = 0
\]

Factoring:

\[(b - 5)(b + 1) = 0\]

It follows that \(b = 5 \) or \(b = -1 \). When \(b = 5 \), the point \(A \) is \((-1, 5)\) and the point \(B \) is \((5, 1)\).

When \(b = -1 \), the point \(A \) is \((5, 1)\) and the point \(B \) is \((-1, 5)\). There are only two points. The area calculations shown in Solution 1 follow from here.

Therefore, the area of \(\triangle OAB \) is 13 units².