Problem of the Week
Problem E and Solution
What are the Possibilities?

Problem
Determine all values of x that satisfy the equation $(x^2 - 5x + 5)x^{x^2+4x-60} = 1$.

Solution
Let’s consider the ways that an expression of the form a^b can be 1:

• The base, a, is 1.
 In this case, the exponent can be any value and we need to solve $x^2 - 5x + 5 = 1$.

 $x^2 - 5x + 5 = 1$
 $x^2 - 5x + 4 = 0$
 $(x - 4)(x - 1) = 0$

 So $x = 4$ or $x = 1$.

• The exponent, b, is 0.
 In this case, the base can be any number other than 0 and we need to solve $x^2 + 4x - 60 = 0$.

 $x^2 + 4x - 60 = 0$
 $(x - 6)(x + 10) = 0$

 So $x = 6$ or $x = -10$.
 When $x = 6$, the base is $6^2 - 5(6) + 5 = 11
eq 0$. That is, when $x = 6$, the base does not equal 0.
 When $x = -10$, the base is $(-10)^2 - 5(-10) + 5 = 155
eq 0$. That is, when $x = -10$, the base does not equal 0.

• The base, a, is -1 and the exponent, b, is even.
 We first need to solve $x^2 - 5x + 5 = -1$.

 $x^2 - 5x + 5 = -1$
 $x^2 - 5x + 6 = 0$
 $(x - 2)(x - 3) = 0$

 So $x = 2$ or $x = 3$.
 When $x = 2$, the exponent is $2^2 + 4(2) - 60 = -48$, which is even.
 Therefore, when $x = 2$, $(x^2 - 5x + 5)x^{x^2+4x-60} = 1$.
 When $x = 3$, the exponent is $3^2 + 4(3) - 60 = -39$, which is odd.
 Therefore, when $x = 3$, $(x^2 - 5x + 5)x^{x^2+4x-60} = -1$. So $x = 3$ is not a solution.

Therefore, the values of x that satisfy $(x^2 - 5x + 5)x^{x^2+4x-60} = 1$ are $x = -10, x = 1, x = 2, x = 4$ and $x = 6$. There are five values of x which satisfy the equation.