



# Problem of the Week Problem D and Solution Angled II

### **Problem**

In  $\triangle PQS$  above, R lies on PQ such that PR = RQ = RS and  $\angle QRS = z^{\circ}$ . Determine the measure of  $\angle PSQ$ .

## Solution

## Solution 1

In  $\triangle PRS$ , since PR = RS,  $\triangle PRS$  is isosceles and  $\angle RPS = \angle RSP = x^{\circ}$ .

Similarly, in  $\triangle QRS$ , since RQ = RS,  $\triangle QRS$  is isosceles and  $\angle RQS = \angle RSQ = y^{\circ}$ .



Since PRQ is a straight line,  $\angle PRS + \angle QRS = 180^{\circ}$ . Since  $\angle QRS = z^{\circ}$ , we have  $\angle PRS = 180 - z^{\circ}$ .

The angles in a triangle sum to  $180^{\circ}$ , so in  $\triangle PRS$ 

$$\angle RPS + \angle RSP + \angle PRS = 180^{\circ}$$

$$x^{\circ} + x^{\circ} + 180 - z^{\circ} = 180^{\circ}$$

$$2x = z$$

$$x = \frac{z}{2}$$

The angles in a triangle sum to  $180^{\circ}$ , so in  $\triangle QRS$ 

$$\angle RQS + \angle RSQ + \angle QRS = 180^{\circ}$$

$$y^{\circ} + y^{\circ} + z^{\circ} = 180^{\circ}$$

$$2y = 180 - z$$

$$y = \frac{180 - z}{2}$$

Then  $\angle PSQ = \angle RSP + \angle RSQ = x^{\circ} + y^{\circ} = \frac{z^{\circ}}{2} + \left(\frac{180-z}{2}\right)^{\circ} = \left(\frac{180}{2}\right)^{\circ} = 90^{\circ}$ . Therefore, the measure of  $\angle PSQ$  is  $90^{\circ}$ .

See Solution 2 for a more general approach to the solution of this problem.



It turns out that it is not necessary to determine expressions for x and y in terms of z to solve this problem.

# Solution 2

In  $\triangle PRS$ , since PR = RS,  $\triangle PRS$  is isosceles and  $\angle RPS = \angle RSP = x^{\circ}$ .

Similarly, in  $\triangle QRS$ , since RQ = RS,  $\triangle QRS$  is isosceles and  $\angle RQS = \angle RSQ = y^{\circ}$ .



The angles in a triangle sum to  $180^{\circ}$ , so in  $\triangle PQS$ 

$$\angle QPS + \angle PSQ + \angle PQS = 180^{\circ}$$

$$x^{\circ} + (x^{\circ} + y^{\circ}) + y^{\circ} = 180^{\circ}$$

$$(x^{\circ} + y^{\circ}) + (x^{\circ} + y^{\circ}) = 180^{\circ}$$

$$2(x^{\circ} + y^{\circ}) = 180^{\circ}$$

$$x^{\circ} + y^{\circ} = 90^{\circ}$$

But 
$$\angle PSQ = \angle RSP + \angle RSQ = x^{\circ} + y^{\circ} = 90^{\circ}$$
.

Therefore, the measure of  $\angle PSQ$  is 90°.