Problem of the Week
Problem D and Solution
Count on This

Problem
Determine the number of integer values of \(n \) that satisfy the following inequality:

\[
\frac{1}{9} \leq \frac{7}{n} \leq \frac{1}{5}
\]

Solution
First notice that since \(\frac{1}{9} \leq \frac{7}{n} \), and \(\frac{1}{9} \) is positive, that means \(\frac{7}{n} \) must be positive as well. It follows that \(n \) is positive.

Since \(\frac{1}{9} = \frac{7}{63} \) and \(\frac{1}{5} = \frac{7}{35} \), we can rewrite our inequality as follows:

\[
\frac{7}{63} \leq \frac{7}{n} \leq \frac{7}{35}
\]

Since the fractions are all positive and \(n > 0 \), this is true when \(35 \leq n \leq 63 \).

This is because if two fractions have the same numerator, then the larger fraction must have a smaller denominator, i.e. \(\frac{2}{5} < \frac{2}{3} \).

Now we just need to count the number of values of \(n \) that satisfy \(35 \leq n \leq 63 \).

We could count them, but a faster way would be to do some simple math. Since \(n \) is an integer, there are \(63 - 35 + 1 = 29 \) possible values for \(n \).