Problem
At 7:00 a.m., Sahil drives north at 48 km/h. At the same time from the same intersection, Brenda drives west at 64 km/h. At what time will they be 260 km apart?

Solution
Let \(t \) be the length of time, in hours, that Sahil and Brenda travel until they are 260 km apart. Since Sahil is travelling at 48 km/h, he will travel \(48t \) km in \(t \) hours. Since Brenda is travelling at 64 km/h, she will travel \(64t \) km in \(t \) hours.

Since Sahil is travelling north and Brenda is travelling west, they are travelling at right angles to each other. We can represent the distances on the following right triangle.

\[
\begin{align*}
260 & \quad 48t \\
64t & \quad 64 \quad 48t
\end{align*}
\]

Using the Pythagorean Theorem
\[
(48t)^2 + (64t)^2 = 260^2
\]
\[
2304t^2 + 4096t^2 = 67600
\]
\[
6400t^2 = 67600
\]
\[
16t^2 = 169
\]
\[
t^2 = \frac{169}{16}
\]

Since \(t > 0 \), \(t = \frac{13}{4} = 3.25 \), which is equivalent to 3 hours and 15 minutes.
Then \(48t = 48 \times \frac{13}{4} = 156 \) and \(64t = 64 \times \frac{13}{4} = 208 \). Also, 3 h 15 min after 7:00 a.m. is 10:15 a.m.

Therefore at 10:15 a.m. Sahil and Brenda are 260 km apart. Sahil has travelled 156 km and Brenda has travelled 208 km.