Problem of the Week
Problem C and Solution
A Missing Length

Problem

A circle with center \(B \) and radius 13 cm has three distinct points, \(F, D \) and \(E \), on its circumference so that \(BF \perp BE \) and \(D \) is on the minor arc \(FE \). Point \(A \) is on \(BF \) so that \(DA \perp BF \). The point \(C \) is on \(BE \) so that \(ABCD \) is a rectangle and the distance from \(C \) to \(E \) is 1 cm. Determine the distance from \(A \) to \(F \).

Solution

Construct radius \(BD \).

Since the radius of the circle is 13 cm, \(BF = BD = BE = 13 \) cm.

Then \(BC = BE - CE = 13 - 1 = 12 \) cm.

Since \(ABCD \) is a rectangle, \(\angle BCD = 90^\circ \).

Using the Pythagorean Theorem in right \(\triangle BCD \),

\[
DC^2 = DB^2 - BC^2
= 13^2 - 12^2
= 169 - 144
= 25
\]

\(DC = 5 \) cm (since \(DC > 0 \))

Since \(ABCD \) is a rectangle, \(AB = DC = 5 \) cm.

Then \(AF = BF - AB = 13 - 5 = 8 \) cm.

Therefore, the length of \(AF \) is 8 cm.