Problem of the Week
Problem E and Solution
Circle, Circle, Circle

Problem
AB is a diameter of a circle centred at O. A line segment is drawn from a point C on the circumference of the circle to D on AB such that $CD \perp AB$ and $CD = \sqrt{3}$ units. Two circles are drawn on AB. One has diameter AD and the other has diameter DB. Determine the area of the shaded region. That is, determine the area outside of the two inner circles but inside the outer circle.

Solution
Join A to C and C to B. Since AB is a diameter and $\angle ACB$ is inscribed in a circle by that diameter, therefore $\angle ACB = 90^\circ$.

Let the radius of the smaller inside circle be r. Then the diameter of the smaller inside circle is $DB = 2r$. Let the radius of the larger inside circle be R. Then the diameter of the larger inside circle is $AD = 2R$.

Since $CD \perp AB$, then $\angle ADC = \angle BDC = 90^\circ$. We will use the Pythagorean Theorem in the three triangle $\triangle ADC$, $\triangle BDC$, and $\triangle ACB$, to establish a relationship between R and r.

All the information is marked in the following diagram.

In $\triangle ADC$, $AC^2 = AD^2 + CD^2 = (2R)^2 + (\sqrt{3})^2 = 4R^2 + 3$.
In $\triangle BDC$, $CB^2 = BD^2 + CD^2 = (2r)^2 + (\sqrt{3})^2 = 4r^2 + 3$.
In $\triangle ACB$, $AB^2 = BC^2 + AC^2 = (4R^2 + 3) + (4r^2 + 3) = 4R^2 + 4r^2 + 6$.
But $AB^2 = (AD + DB)^2 = (2R + 2r)^2 = (2R + 2r)(2R + 2r) = 4R^2 + 8Rr + 4r^2$.

$\therefore 4R^2 + 8Rr + 4r^2 = 4R^2 + 4r^2 + 6$ and $8Rr = 4$ or $Rr = \frac{3}{4}$ follows.
The radius of the smaller inner circle is r, the radius of the larger inner circle is R, and the radius of the outer circle is $(R + r)$. We can now find the shaded area.

\[
\text{Shaded Area} = \text{Area Outer Circle} - \text{Area Larger Inner Circle} - \text{Area Smaller Inner Circle} \\
= \pi \times (R + r)^2 - \pi \times R^2 - \pi \times r^2 \\
= \pi \times (R^2 + 2Rr + r^2) - \pi R^2 - \pi r^2 \\
= \pi R^2 + 2\pi Rr + \pi r^2 - \pi R^2 - \pi r^2 \\
= 2\pi Rr \\
= 2\pi \times \frac{3}{4}, \text{ since } Rr = \frac{3}{4} \\
= \frac{3\pi}{2}
\]

Therefore, the shaded area is $\frac{3\pi}{2}$ units2.

NOTE: The relationship $Rr = \frac{3}{4}$ could also be established using similar triangles as follows:

In $\triangle ACD$, $\angle CAD + \angle ACD = 90^\circ$ (1).

Since $\angle ACB = 90^\circ$, $\angle ACD + \angle DCB = 90^\circ$ (2).

Subtracting (2) from (1) we get $\angle CAD - \angle DCB = 0$. The equation simplifies to $\angle CAD = \angle DCB$.

Now $\angle CAD = \angle DCB$ and $\angle CDA = \angle CDB = 90^\circ$. Therefore, $\triangle ADC \sim \triangle CDB$. From triangle similarity,

\[
\frac{AD}{CD} = \frac{CD}{DB} \\
\frac{2R}{\sqrt{3}} = \frac{\sqrt{3}}{2r} \\
4Rr = 3 \\
Rr = \frac{3}{4}
\]