
Problem of the Month
Problem 0: September 2022

(a) Consider the integers 392, 487, 638, and 791. For each of these integers, do the following.

(i) Determine whether the integer is a multiple of 7.

(ii) With the hundreds digit equal to A, the tens digit equal to B, and the units digit equal
to C, compute 2A + 3B + C.

What do you notice?

(b) Suppose n = ABC is a three-digit integer (A is the hundreds digit, B is the tens digit, and
C is the units digit). Show that if ABC is a multiple of 7, then 2A + 3B + C is a multiple
of 7.

(c) Show that if 2A + 3B + C is a multiple of 7, then the three-digit integer n = ABC is a
multiple of 7.

(d) Suppose ABCDEF is a six-digit integer that has each of its digits different from 0. Show
that ABCDEF is a multiple of 7 if and only if BCDEFA is a multiple of 7.

(e) Think of ways to generalize the fact in part (d).



Problem of the Month
Problem 0: September 2022

Hint

(b) What are the remainders when 100 and 10 are divided by 7?

(d) Try to find a condition on six-digit integers that detects divisibility by 7. There is a well-
known general test for divisibility by 7, but it will be useful to find another one that is
specific to six-digit integers and similar to the condition for three-digit integers implied by
(b) and (c).



Problem of the Month
Solution to Problem 0: September 2022

(a) In the table below, the first column contains the four integers given in the problem, the
middle column says whether that integer is a multiple of 7, and the third column contains
the value of 2A + 3B + C.

ABC Multiple of 7? 2A + 3B + C

392 yes (7 × 56) 35
487 no 39
638 no 29
791 yes (7 × 113) 42

The two integers that are multiples of 7 have the property that 2A + 3B + C is also a
multiple of 7, and the two integers that are not multiples of 7 have the property that
2A + 3B + C is not a multiple of 7.

(b) The integer ABC is equal to 100A+10B+C. Observe that 100 = 7×14+2 and 10 = 7+3,
so we have that

ABC = 100A + 10B + C

= [7(14) + 2]A + (7 + 3)B + C

= 7(14A + B) + (2A + 3B + C)

which can then be rearranged to get ABC − 7(14A + B) = 2A + 3B + C.

We are assuming that ABC is a multiple of 7, so the expression 2A + 3B + C is equal to
the difference of two multiples of 7, and so it must be a multiple of 7.

(c) Using the calculation from part (b), ABC = 7(14A+B) + 2A+ 3B+C for any three-digit
positive integer ABC. If 2A + 3B + C is a multiple of 7, then ABC is the sum of two
multiples of 7 and so must be a multiple of 7.

(d) The combined result of parts (b) and (c) is that a three-digit integer ABC is a multiple
of 7 if and only if the integer 2A + 3B + C is a multiple of 7. To answer the question in
this part, we will first establish a similar fact about six-digit integers.

To do this, we first divide each of 10, 102, 103, 104, and 105 by 7 to find the quotient and
remainder.

10 = 7 + 3

102 = 7(14) + 2

103 = 7(142) + 6

104 = 7(1428) + 4

105 = 7(14285) + 5

Since ABCDEF = A×105 +B×104 +C×103 +D×102 +E×10 +F , we can substitute
the equations above and rearrange to get that

ABCDEF = 7(14285A + 1428B + 142C + 14D + E) + (5A + 4B + 6C + 2D + 3E + F )
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and since 7(14285A + 1428B + 142C + 14D + E) is a multiple of 7, a similar argument to
those used in parts (b) and (c) imply that the integer ABCDEF is a multiple of 7 if and
only if the quantity 5A + 4B + 6C + 2D + 3E + F is a multiple of 7.

We will now prove that ABCDEF is a multiple of 7 if and only if BCDEFA is a multiple
of 7. First, assume that ABCDEF is a multiple of 7. By the fact established above, the
integer 5A+ 4B + 6C + 2D+ 3E +F is a multiple of 7. Though it may seem like a strange
observation, this implies that 3(5A + 4B + 6C + 2D + 3E + F ) must be a multiple of 7.
Expanding and grouping some terms, we have

3(5A + 4B + 6C + 2D + 3E + F ) = 15A + 12B + 18C + 6D + 9E + 3F

= (14A + 7B + 14C + 7E)

+ (A + 5B + 4C + 6D + 2E + 3F )

= 7(2A + B + 2C + E)

+ (5B + 4C + 6D + 2E + 3F + A)

and so 7(2A + B + 2C + E) + (5B + 4C + 6D + 2E + 3F + A) is a multiple of 7. This
implies that 5B + 4C + 6D + 2E + 3F + A is a multiple of 7, and by the fact established
above, the six-digit integer BCDEFA is a multiple of 7.

We now suppose that BCDEFA is a multiple of 7. We have already shown above that
if the digits are “cycled” to the left, then the integer obtained is also a multiple of 7.
Applying this several times, we have that CDEFAB is a multiple of 7, as are DEFABC,
EFABCD, FABCDE, and finally ABCDEF .

As an example, you can verify for yourself that 314517 is a multiple of 7, and so are each
of 145173, 451731, 517314, 173145, and 731451. Similarly, the integer 215739 is not a
multiple of 7, and neither are any of 157392, 573921, 739215, 392157, and 921573.

Note: The assumption that none of the digits of ABCDEF are zero implies that each of
the integers obtained by cycling the digits is a six-digit integer. If we were to allow digits
equal to 0, the claim remains true, but in practice we may need to include “leading zeros”.
For example, cycling the digits of the integer 300412 in this way would lead to 004123
(which is really a four-digit integer), then 041230, 412300, 123004, and so on.

(e) While we will not include proofs here, we will list a few ways that the result in (d) can be
generalized.

• If the number of digits in an integer is any positive multiple of 6, then the result of
part (d) still holds. That is, if n has 6k digits for some k ≥ 1, then n is a multiple of
7 if and only if the integer obtained by cycling its digits is a multiple of 7.

• For any prime number p, other than 2 and 5, if an integer has p−1 digits, then it is a
multiple of p if and only if the integer obtained by cycling its digits is a multiple of p.
For example, a 16-digit integer is a multiple of 17 if and only if the integer obtained
by cycling its digits is a multiple of 17. The reason this fails for p = 2 and p = 5 is
related to the fact that 2 and 5 are the prime factors of 10, which is the base of our
number system.

• Suppose k is an integer. The Euler Totient Function of k, denoted by ϕ(k), is defined
to be the number of integers m with 1 ≤ m ≤ k such that gcd(m, k) = 1. For example,
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ϕ(6) = 2 since 1 and 5 are the only integers between 1 and 6 inclusive that have a gcd
of 1 with 6. ϕ(21) = 12 since there are exactly 12 integers m from 1 to 21 inclusive
with the property that gcd(m, 21) = 1. They are 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20.

If k is an integer that is neither a multiple of 2 nor a multiple of 5, then any ϕ(k)-digit
integer is a multiple of k if and only if the integer obtained by rotating its digits is
a multiple of k. For example, the 12-digit integer 439874621235 is a multiple of 21,
and so are 398746212354, 987462123543, and so on.

One of the key observations for proving something like this is a result due to Euler
that says that when a and k are nonzero integers with gcd(a, k) = 1, the remainder
when dividing aϕ(k) by k is 1.
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Problem of the Month
Problem 1: October 2022

In any triangle, there is a unique circle called its incircle that can be drawn in such a way that it
is tangent to all three sides of the triangle. For a given triangle, the radius of its incircle is known
as its inradius and is denoted by r.

For each side of the triangle (which is tangent to the incircle), another tangent to the incircle can
be drawn in such a way that it is parallel to that side. The three sides as well as these three new
tangents give a total of six tangents to the incircle. They uniquely determine a hexagon that we
will call the Seraj hexagon of the triangle.

Finally, for a given triangle, we will denote by s its semiperimeter, which is defined to be half of
its perimeter.

The diagram below is of a triangle showing its incircle and Seraj hexagon.

(a) Sketch the 3–4–5 triangle with its incircle and Seraj hexagon. Compute its inradius, semiperime-
ter, and the area of its Seraj hexagon.

(b) Find a general expression for the area of a triangle in terms only of its inradius and semiperime-
ter.

(c) Find a general expression for the area of the Seraj hexagon of a triangle in terms of its three
side lengths, its semiperimeter, and its inradius.

(d) What is the largest possible value that can be obtained by dividing the area of a triangle’s
Seraj hexagon by the total area of the triangle?



Problem of the Month
Problem 1: October 2022

Hint

(a) There are several ways to compute the area of the Seraj hexagon. One is to subtract the
areas of three smaller triangles from that of the full triangle.

(b) From the centre of the incircle, draw a radius to each point of tangency the circle has with
the triangle.

(c) • If 4ABC is similar to 4DEF , then
AB

DE
=

BC

EF
=

AC

DF
. It is a useful general fact that

if we denote this common ratio by k, then any two corresponding altitudes of these two
triangles also have a ratio of k. Can you compute the ratio of the areas of 4ABC and
4DEF in terms of k?

• One possible expression is

rs

[
1−

(
1− a

s

)2
−
(
1− b

s

)2

−
(
1− c

s

)2]

(d) Try to prove that 3(x2 + y2 + z2) ≥ (x+ y + z)2 is true for all real numbers x, y, and z and
determine a condition on x, y, and z that implies 3(x2 + y2 + z2) = (x+ y + z)2.



Problem of the Month
Solution to Problem 1: October 2022

Note: In this solution, we will denote by |4ABC| the area of 4ABC. We will also use the
following facts about circles.

Fact 1: Suppose a circle has centre O and P is a point on its circumference. The tangent to
the circle at point P is perpendicular to the radius from O to P .

Fact 2: For any point Q outside of a circle, there are exactly two tangents to the circle that
pass through Q. If the points of tangency are A and B, then AQ = BQ.

(a) Below is a picture of the triangle. Its vertices are labelled by A, B, and C with the right
angle at C, AC = 3, BC = 4, and AB = 5. The centre of the incircle is labelled by I, and
AB, BC, and AC are tangent to the incircle at D, E, and F , respectively.

A

BC

I

D

E

F

Since the perimeter is 3 + 4 + 5 = 12, the semiperimeter is s =
12

2
= 6.

To compute r, we first use Fact 1 to get that ∠IFC = ∠IEC = 90◦. We are assuming
that ∠FCE = 90◦ as well, and since the sum of the angles of a quadrilateral is always
360◦, ∠FIE = 90◦. Therefore, CFIE is a rectangle. Since IF and IE are radii of the
incircle, IF = IE = r. Since CFIE is a rectangle, CF = CE = r.

Using that CF = CE = r, we get BE = BC −CE = 4− r and AF = AC −CF = 3− r.
By Fact 2, BD = BE and AD = AF , and since AB = 5,

5 = AB

= AD + BD

= AF + BE

= (3− r) + (4− r)

= 7− 2r

This gives 5 = 7− 2r, which can be solved for r to get r = 1.

In the diagram below, the Seraj hexagon has been added. The side of the Seraj hexagon
that is parallel to AB (and tangent to the incircle) intersects BC at L and AC at M . The
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side of the Seraj hexagon that is parallel to BC intersects AC at G and AB at H. The
side of the Seraj hexagon that is parallel to AC intersects AB at J and BC at K. The
point of tangency of JK with the circle is labelled by N .

A

BC

G
H

J

KL

M

I

D

E

F N

To compute the area of the Seraj hexagon, we will compute the areas of 4MLC, 4AHG,
and 4JBK and subtract their combined area from the area of 4ABC.

To compute the area of 4MLC, we first set CM = x and CL = y. Since LM is parallel
to AB, we have that ∠CML = ∠CAB and ∠CLM = ∠CBA. Since the two share a right

angle at C, 4MLC is similar to 4ABC. Therefore,
y

x
=

CL

CM
=

BC

AC
=

4

3
, or y =

4

3
x.

From earlier, we have that CF = CE = 1, which means FM = 1−x and EL = 1− y. By
Fact 2, LM = EL + FM = 2 − x − y. By the Pythagorean theorem applied to 4CML

and using that y =
4

3
x, we have

CM2 + CL2 = LM2

x2 + y2 = (2− x− y)2

x2 +

(
4

3
x

)2

=

(
2− 7

3
x

)2

x2 +
16

9
x2 = 4− 28

3
x +

49

9
x2

0 =
8

3
x2 − 28

3
x + 4

0 = 2x2 − 7x + 3 (multiply by 3
4
)

0 = (x− 3)(2x− 1)

If x − 3 = 0, then M is at A, but AB and LM are distinct parallel lines, so they have

no points in common. Therefore, 2x − 1 = 0 or x =
1

2
, so y =

4

3
× 1

2
=

2

3
. We can now

compute

|4CML| = 1

2
xy =

1

2
× 1

2
× 2

3
=

1

6

We now compute the area of 4JBK. By Fact 1, ∠IEK = ∠INK = 90◦, and since JK
is parallel to AC, ∠EKN = 90◦ as well. By reasoning similar to earlier, we conclude that
INKE is a square of side-length r, which means EK = r. We also have that CE = r, so
this means BK = BC − CE − EK = 4− 1− 1 = 2.
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Since JK is parallel to AC, 4JBK is similar to 4ABC by reasoning similar to that

which was used to show that 4MLC was similar to 4ABC. This means
JK

AC
=

BK

BC
or

JK =
AC ×BK

BC
. Substituting AC = 3, BK = 2, and BC = 4 into this equation, we get

JK =
3

2
. Therefore,

|4JBK| = 1

2
×BK × JK =

1

2
× 2× 3

2
=

3

2

Using very similar reasoning, one can show that |4AHG| = 2

3
. Therefore, the area of the

Seraj hexagon is

|4ABC| − |4MLC| − |4JBK| − |4AHG| = 1

2
× 4× 3− 1

6
− 3

2
− 2

3
=

11

3

(b) In the diagram below, a triangle has its incircle drawn. Radii are drawn from the centre
of the incircle, I, to the points of tangency of AB, BC, and AC, which are labelled D, E,
and F , respectively. As well, I is connected by line segments to each vertex of the triangle.

A

B

C

E

D

F

r

I

Set AB = c, BC = a, and AC = b. With this notation, the semiperiemter of 4ABC is

s =
a + b + c

2
. Since ID, IE, and IF are radii to points of tangency, they are perpendicular

to AB, BC, and AC, respectively. Therefore, they are altitudes of 4ABI, 4BCI, and
4CAI, respectively. These three triangles compose the entirety of4ABC with no overlap,
so the area of 4ABC is equal to the sum of their areas. Therefore,

|4ABC| = 1

2
× AB × ID +

1

2
×BC × IE +

1

2
× AC × IF

=
1

2
cr +

1

2
ar +

1

2
br

= r × a + b + c

2
= rs

As an example demonstrating this formula, consider4ABC from part (a). Using the usual

area formula, |4ABC| = 1

2
× 3× 4 = 6. From part (a), its semiperimeter is

3 + 4 + 5

2
= 6

and inradius is r = 1, so rs = 1× 6 = 6, which is the correct area.
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(c) In the diagram below, 4ABC has its incircle and Seraj hexagon drawn. The side of the
Seraj hexagon that is parallel to BC intersects AB at D and AC at E. The side parallel
to AB intersects AC at F and BC at G. The side parallel to AC intersects BC at H and
AB at J . The altitude of 4ABC from A is also drawn and its points of intersection with
BC and DE are labelled by K and L, respectively1.

A

B C

D E

F

GH

J

K

L

By construction, DE is parallel to BC. By reasoning similar to that which was used in
earlier parts, this means 4ABC is similar to 4ADE and 4ABK is similar to 4ADL.

These two pairs of similar triangles imply that
DE

BC
=

AD

AB
and

AD

AB
=

AL

AK
. We will call

this common ratio k. The area of 4ADE can be computed in terms of k and the area of
4ABC as follows

|4ADE| = 1

2
(DE)(AL)

=
1

2
(k(BC)) (k(AK))

= k2

(
1

2
×BC × AK

)
= k2|4ABC|

We next examine the quantity k. Since DE and BC are different parallel tangents to the
incircle and KL is perpendicular to both lines, the length of KL must be equal to the
diameter of the incircle (you may want to think about why this is true). The diameter of
the incircle is 2r, so KL = 2r, which means AL = AK − 2r.

Therefore, we have k =
AL

AK
=

AK − 2r

AK
= 1 − 2r

AK
. From part (b), |4ABC| = rs, but

from the usual formula for the area of a triangle we also have |4ABC| =
1

2
(BC)(AK).

This implies 2rs = (BC)(AK) or AK =
2rs

BC
. Substituting into the formula for k above,

we have that

k = 1− 2r

AK
= 1− 2r(BC)

2rs
= 1− BC

s

1If ∠ABC or ∠ACB is obtuse, then AK intersects some extensions DE and BC and not the line segments
themselves. We leave it to the reader to verify that the argument that follows works even if AK does not pass
through DE and BC.
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If we set AB = c, BC = a, and AC = b, then we get k = 1− a

s
. Earlier, we showed that

|4ADE| = k2|4ABC|, so

|4ADE| =
(

1− a

s

)2
|4ABC|

By similar reasoning, we also have

|4JBH| =
(

1− b

s

)2

|4ABC|

|4FGC| =
(

1− c

s

)2
|4ABC|

The area of the Seraj hexagon is equal to the area of 4ABC minus the combined area of
these three triangles, so using the formulas just above as well as |4ABC| = rs, we have

|DEFGHJ | = |4ABC| − |4ADE| − |4JBH| − |4FGC|

= |4ABC|

[
1−

(
1− a

s

)2
−
(

1− b

s

)2

−
(

1− c

s

)2]

= rs

[
1−

(
1− a

s

)2
−
(

1− b

s

)2

−
(

1− c

s

)2]

(d) As suggested in the hint, we will show that 3(x2 + y2 + z2) ≥ (x + y + z)2 for all real
numbers x, y, and z. To see this, note that the inequality is equivalent to the inequality

3(x2 + y2 + z2)− (x + y + z)2 ≥ 0

which, after expanding and rearranging the left side, is the same as

2(x2 + y2 + z2)− 2(xy + yz + zx) ≥ 0

After further manipulation, this is equivalent to

(x− y)2 + (y − z)2 + (z − x)2 ≥ 0

Therefore, the given inequality is true exactly when (x− y)2 + (y− z)2 + (z−x)2 ≥ 0. The
sum of three squares is always non-negative, so this inequality is always true. Therefore,
the given inequality is true for all real numbers x, y, and z, as claimed. Moreover, the only
way that the quantity (x− y)2 + (y − z)2 + (z − x)2 can be equal to 0 is when x = y = z,
and hence, the only way that 3(x2 + y2 + z2) = (x + y + z)2 is when x = y = z.

Dividing the expression for the area of the Seraj hexagon from part (c) by rs, we get that
the ratio of the area of the Seraj hexagon to that of the triangle is

1−
(

1− a

s

)2
−
(

1− b

s

)2

−
(

1− c

s

)2
Using the inequality established above, we can multiply by −1

3
to get that for any real

numbers x, y, and z, −x2 − y2 − z2 ≤ −1

3
(x + y + z)2. Applying this with x = 1 − a

s
,

5



y = 1− b

s
, and z = 1− c

s
, we get that

1−
(

1− a

s

)2
−
(

1− b

s

)2

−
(

1− c

s

)2
= 1− x2 − y2 − z2

≤ 1− 1

3
(x + y + z)2

= 1− 1

3

(
1− a

s
+ 1− b

s
+ 1− c

s

)2

= 1− 1

3

(
3− a + b + c

s

)2

= 1− 1

3

(
3− 2s

s

)2

= 1− 1

3

=
2

3

Therefore, the ratio is at most
2

3
in every triangle. By the remark at the end of the proof

of the inequality, the ratio equals
2

3
exactly when 1 − a

s
= 1 − b

s
= 1 − c

s
. Since s is

always nonzero, this is equivalent to a = b = c. Therefore, the ratio is maximized when
the triangle is equilateral. It is not difficult to explicitly show that the area of the Seraj
hexagon in an equilateral triangle is equal to two thirds of the area of the triangle.
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Problem of the Month
Problem 2: November 2022

Let φ =
1 +
√

5

2
≈ 1.61803. For integers dk, dk−1, . . . , d1, d0, d−1, . . . , d−r, each equal to 0 or 1, the

expression
(dkdk−1 · · · d2d1d0.d−1d−2 · · · d−r)φ

is called a base φ expansion and represents the real number

dkφ
k + dk−1φ

k−1 + · · ·+ d1φ+ d0 + d−1φ
−1 + d−2φ

−2 + · · ·+ d−rφ
−r

The integers dk through d−r are called the digits of the expansion. For example, the base φ
expansion 1101.011φ represents the real number

(1× φ3) + (1× φ2) + (0× φ) + 1 + (0× φ−1) + (1× φ−2) + (1× φ−3)

which can be simplified to get

φ3 + φ2 + 1 +
1

φ2
+

1

φ3
=

(
1 +
√

5

2

)3

+

(
1 +
√

5

2

)2

+ 1 +

(
2

1 +
√

5

)2

+

(
2

1 +
√

5

)3

=
16 + 8

√
5

8
+

6 + 2
√

5

4
+ 1 +

4

6 + 2
√

5
+

8

16 + 8
√

5

= (2 +
√

5) +

(
3

2
+

1

2

√
5

)
+ 1 +

(
3

2
− 1

2

√
5

)
− (2−

√
5)

= 4 + 2
√

5

and so 1101.011φ = 4 + 2
√

5.

(a) What are the real numbers represented by 1011φ and 10000φ?

(b) Find a base φ expansion of the real number 4 + 3
√

5.

(c) Show that φ2 = φ+ 1 and use this to deduce that φn+1 = φn + φn−1 for all integers n.

(d) Show that every positive integer has a base φ expansion and find a base φ expansion for each
positive integer from 1 through 10. One approach is to prove and use the following two facts.

• If a real number n has a base φ expansion, then it has a base φ expansion that does not
have two consecutive digits equal to 1.

• If a real number n has a base φ expansion, then it has a base φ expansion that has its
units digit, d0, equal to 0.



Problem of the Month
Problem 2: November 2022

Hint

(b) What is φ +
1

φ
?

(d) One way to prove the first fact is to show that if there are two consecutive digits equal to 1,
then there is a base φ expansion with fewer non-zero digits. To prove the second fact, use
the same idea as in the proof of the first fact, but in reverse.



Problem of the Month
Solution to Problem 2: November 2022

(a) Expanding and simplifying, we have

1011φ = φ3 + φ+ 1 =

(
1 +
√

5

2

)3

+
1 +
√

5

2
+ 1

=
16 + 8

√
5

8
+

1 +
√

5

2
+ 1

=
4 + 2

√
5

2
+

1 +
√

5

2
+

2

2

=
7 + 3

√
5

2

10000φ = φ4 =

(
1 +
√

5

2

)4

=

(
1 +
√

5

2

)2(
1 +
√

5

2

)2

=

(
6 + 2

√
5

4

)(
6 + 2

√
5

4

)

=
56 + 24

√
5

16

=
7 + 3

√
5

2

and so we see that 1011φ = 10000φ

(b) There are several ways to approach this problem and we will demonstrate two of them.
First, from the example given in the problem statement, we have that

4 + 2
√

5 = φ3 + φ2 + 1 +
1

φ2
+

1

φ3

and using the hint, we have that

φ+
1

φ
=

1 +
√

5

2
+

2

1 +
√

5
=

1 +
√

5

2
+

2(
√

5− 1)

4
=
√

5

and so

4 + 3
√

5 = (4 + 2
√

5) +
√

5

=

(
φ3 + φ2 + 1 +

1

φ2
+

1

φ3

)
+

(
φ+

1

φ

)
= 1111.111

1



Another approach is to use what might be called a “greedy algorithm”. We first note that
4 + 3

√
5 ≈ 10.708204 and then consider powers of φ and find the first one that does not

exceed it. As it turns out, φ4 ≈ 6.854102 and φ5 ≈ 11.090170. It can be checked that

φ4 =
7 + 3

√
5

2
, so if we let α = 4 + 3

√
5, then

α− φ4 =
8 + 6

√
5

2
− 7 + 3

√
5

2
=

1 + 3
√

5

2

The approximate value of α − φ4 is 3.854102. Now we check that φ2 ≈ 2.618034 and
φ3 ≈ 4.236068, so the largest power of φ that does not exceed α − φ4 is φ2, and it can be
checked that

α− φ4 − φ2 = −1 +
√

5 ≈ 1.236068

Since φ0 = 1 and φ1 = φ ≈ 1.618034, the largest power of φ that does not exceed α−φ4−φ2

is φ0 = 1, and so we now consider the quantity

α− φ4 − φ2 − 1 = −2 +
√

5 ≈ 0.236068

Considering φ taken to negative integer exponents, we find that φ−3 ≈ 0.236068, so we
suspect that −2 +

√
5 is exactly equal to φ−3. Indeed,(

2

1 +
√

5

)3

=
8

16 + 8
√

5
=

1

2 +
√

5
= −2 +

√
5

Therefore, α− φ4 − φ2 − 1 =
1

φ3
which can be rearranged to get α = φ4 + φ2 + φ0 + φ−3,

which means 4 + 3
√

5 = 10101.001. Notice that these two base φ expansions are different
and both correct. A way to see that the expansions are equal is explained throughout the
rest of the solution.

(c) Expanding φ2 and simplifying, we have

φ2 =

(
1 +
√

5

2

)2

=
6 + 2

√
5

4

=
3 +
√

5

2

=
1 +
√

5

2
+

2

2
= φ+ 1

Multiplying this equation by φn−1 gives φn−1 + φn = φn+1. It will be useful in part (d) to
note that this means that 011φ = 100φ and more generally, if 011 ever occurs in a base φ
expansion, it can be replaced by 100, or vice versa, without changing the actual value of
the number being expressed.

(d) As suggested in the problem, we will use the facts in the bullet points. Specifically, we will
use Fact 1 and Fact 2 below:

2



Fact 1: If a real number n has a base φ expansion, then it has a base φ expansion that
does not have two consecutive digits equal to 1.

Fact 2: If a real number n has a base φ expansion, then it has a base φ expansion that has
its units digit d0 equal to 0.

Proof of Fact 1. Let n = dkdk−1 · · · d2d1d0.d−1d−2 · · · d−r be a base φ expansion of n. We
will call the digit dm bad if dm = 1 and at least one of dm+1 and dm−1 is equal to 1. We
want to show that n has a base φ expansion that has no bad digits.

Observe that if n has an expansion with every digit equal to 0, then n must itself be the
real number 0. This is because every power of φ is positive.

Suppose the given expansion of n has at least one bad digit. Then we let m be the largest
integer such that dm is bad. By definition, dm = 1 and either dm+1 = 1 or dm−1 = 1.
However, it is not possible for dm+1 = 1 since this would imply that dm+1 is bad, but m is
the largest integer such that dm is bad.

Thus, we must have dm+1 = 0, dm = 1, and dm−1 = 1, and so the given expansion is

n = dkdk−1 · · · dm+2011dm−2 · · · d1d0.d−1d−2 · · · d−r

By the remark at the end of part (c), we can replace the 011 by 100 to get that

n = dkdk−1 · · · dm+2100dm−2dm−2 · · · d1d0.d−1d−2 · · · d−r

Notice that we have found a base φ expansion of n with fewer non-zero digits, under the
assumption that the expansion had at least one bad digit. In other words, if a base φ
expansion of n has at least one bad digit, then there is a base φ expansion of n that has
fewer non-zero digits. Thus, as long as there is a bad digit, we can decrease the number
of non-zero digits.

By the above remark, unless n = 0, the number of nonzero digits cannot decrease indefi-
nitely since there were finitely many digits to begin with. Thus, we must eventually lose
the ability to decrease the number of nonzero digits, and by the previous paragraph, this
means we must eventually reach a base φ expansion that has no bad digits.

Below is an example of the procedure explained in the proof of Fact 1. It is used to find
a base φ expansion of n = 1010101110011.1101φ that has no bad digits. There is a step
where a leading 11 is replaced by 100. The digits are aligned in the equations to indicate
where this happened. In every line except the last, the the digits that are changed in the
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subsequent line are highlighted in red.

n = 1010101110011.1101φ

= 1010110010011.1101φ

= 1011000010011.1101φ

= 1100000010011.1101φ

= 10000000010011.1101φ

= 10000000010100.1101φ

= 10000000010101.0001φ

Proof of Fact 2. This can be shown by an argument rather similar to the proof of Fact 1.
This time, we will introduce bad digits in order to remove a potential 1 from the units
digit. Suppose n has a base φ expansion. By Fact 1, we can assume that the expansion
n = dkdk−1 · · · d2d1d0d−1 · · · d−rφ is a expansion without any bad digits. If d0 = 0, then
there is nothing to do, so we assume that d0 = 1. We will now artificially add two “trailing”
0’s as digits. That is, we also have that

n = dkdk−1 · · · d2d1d0d−1 · · · d−rd−r−1d−r−2

where d−r−1 = d−r−2 = 0. Let m be the largest integer with 0 > m and dm = dm−1 = 0.
Since we have added two trailing zeros, we know this must happen somewhere, so it is
possible to choose m this way.

By the choice of m, we must have that dm+1 = 1, and since the expansion has no bad
digits, dm+2 = 0. By the choice of m, it then follows that dm+3 = 1, then since there are
no bad digits, we get dm+4 = 0, and so on. Since d0 = 1, this alternating pattern must
eventually reach d0 = 1. In other words, the expansion takes the form

n = dkdk−1 · · · d3d2d11.010101 · · · 010100dm−2dm−3 · · · d−rd−r−1d−r−2

By part (c), we can change dm and dm−1 to 1’s and compensate by changing dm+1 to 0.
The new expansion is

n = dkdk−1 · · · d3d2d11.010101 · · · 010011dm−2dm−3 · · · d−rd−r−1d−r−2

Repeating this process, we now change dm+1 and dm+2 to 1’s and change dm+3 to a 0. This
process terminates in the expansion

n = dkdk−1 · · · d3d2d10.111111 · · · 111dm−2dm−3 · · · d−r

which indeed has d0 = 0.

The procedure in the proof of Fact 2 is used below to find a base φ expansion of the
number represented as n = 100101001.01010101001010010001φ that has d0 = 0. As was
done earlier, in each line but the last, the three digits highlighted in red are the ones that
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change in the subsequent line.

n = 100101001.01010101001010010001φ

n = 100101001.01010100111010010001φ

n = 100101001.01010011111010010001φ

n = 100101001.01001111111010010001φ

n = 100101001.00111111111010010001φ

n = 100101000.11111111111010010001φ

Now we will apply the facts to derive base φ expansions for the first ten positive integers.

To start, we have that 1 = 1φ since 1 = φ0. This means the integer 1 has a base φ
expansion. Following the procedure outlined in the proof of Fact 2, 1 = 0.11φ. It is easy
to add 1 to a base φ expansion that has d0 = 0 because we can simply change d0 = 1.
Thus, we have that 2 = 1.11φ, and using the procedure from the proof of Fact 1 again, we
get 2 = 10.01φ.

Continuing in this way, if we have a base φ expansion of the integer n, then we can use
the technique in the proof of Fact 1 to find a base φ expansion that does not have any
bad digits. Then, if necessary, we can use the technique in the proof of Fact 2 to find a
base φ expansion of n that has d0 = 0. From this, we can find a base φ expansion of n+ 1
by taking the base φ expansion of n and switching d0 from 0 to 1, which has the effect of
adding 1. This process can be repeated to find a base φ expansion of n + 2, then n + 3,
and so on. Starting with n = 1, this is demonstrated up to n = 10 below.

1 = 1φ 6 = 111.0111φ

= 1.00φ = 1001.1001φ

= 0.11φ = 1010.0001φ

2 = 1.11φ 7 = 1011.0001φ

= 10.01φ = 1100.0001φ

3 = 11.01φ 8 = 1101.0001φ

= 100.01φ = 10000.1101φ

4 = 101.01φ 9 = 10001.1101φ

= 101.0100φ = 10010.0101φ

= 101.0011φ

= 100.1111φ

5 = 101.1111φ 10 = 10011.0101φ

= 110.0111φ = 10100.0101φ
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Problem of the Month
Problem 3: December 2022

This month’s problem is an extension of Problem 6 from the November 2022 Canadian Senior
Mathematics Contest. Here is the original problem.

A bag contains exactly 15 marbles of which 3 are red, 5 are blue, and 7 are green.
The marbles are chosen at random and removed one at a time from the bag until all
of the marbles are removed. One colour of marble is the first to have 0 remaining in
the bag. What is the probability that this colour is red?

Note: It might be useful to familiarize yourself with the notation of binomial coefficients before
attempting this problem.

(a) Suppose there are r red marbles and b blue marbles. As in the original problem, the marbles
are chosen at random and removed from the bag one at a time until all marbles are removed.
One colour of marble is the first to have 0 marbles remaining in the bag. What is the
probability that this colour is red?

(b) Suppose there are r red marbles, b blue marbles, and g green marbles. The marbles are
chosen at random and removed one at a time until all marbles are removed. What is the
probability that red is the colour of marble that is first to be completely removed from the
bag?

(c) Suppose there are r red marbles, b blue marbles, and g green marbles with r < b < g. Let
p(r) be the probability that the red marbles are the first to be completely removed from
the bag and define p(b) and p(g) similarly. Determine which of p(r), p(b), and p(g) is the
smallest and which is the largest. Does the result agree with your intuition?

(d) Show that the values of p(r), p(b), and p(g) depend only on the proportions of r, b, and g to
the total number of marbles. For example, if one bag has r red, b blue, and g green marbles
and another has 7r red, 7b blue, and 7g green marbles, then the probability that the red are
removed first is the same for both bags.



Problem of the Month
Problem 3: December 2022

Hint

(a) If the red marbles are all removed from the bag first, then what is the colour of the last
marble to be removed from the bag?

(b) As in part (a), it is useful to think about the colour of the final marble to be removed. In
part (a), the final colour alone determines which colour has completely removed first. In this
part, it is a bit more complicated.

(c) Try to find a general expression for each of p(r), p(b), and p(g), simplifying as much as
possible. Once you have done this, try to determine the sign of p(r) − p(b).

(d) One way to approach this is to compute the probabilities directly in terms of the proportions.
Thinking about which colour is removed last will likely be helpful, as in earlier parts. Another
approach is to use a general formula for the probabilities in terms of r, b, and g, and divide
the numerator and denominator by (r + b + g)2.



Problem of the Month
Solution to Problem 3: December 2022

(a) Suppose there are r red marbles and b blue marbles and set n = r+ b. Upon removing the
n marbles from the bag in random order, we can record the order in which they emerged
from the bag by a sequence of R’s and B’s. For example, if the first two marbles were red
and the third was blue, then the sequence would begin with RRB. If the fourth was red,
then the sequence would continue RRBR, and so on.

An important observation in this part and later parts of the solution is that every possible
sequence of n characters, r of which are R and b of which are B, is equally likely to occur
through this process. To make this observation, we first imagine labelling the red marbles
by R1, R2, and so on through to Rr, and the blue marbles by B1, B2, and so on through
to Bb. With this labelling, we have made it so that the n marbles are distinct. There
are exactly n! orders in which the marbles can be removed, and each of them is equally
likely. If we now imagine listing these n! possible orderings of R1, . . . , Rr, B1, . . . , Bb and
removing the subscripts, each possible sequence of r R’s and b B’s will occur in the list
exactly (r!)(b!) times. Therefore, if we remove the (unindexed) marbles and write down
the sequence of R’s and B’s, each possible sequence will occur with probability exactly
r!b!

n!
=

1(
n
r

) . Hence, every sequence occurs with the same probability. Notice that

(
n

r

)
is

equal to the number of sequences of r R’s and b B’s since any such sequence is completely
determined by selecting r of the n possible positions and placing R in them.

Therefore, the probability that the red marbles are removed first is equal to the number
of sequences of r R’s and b B’s with the property that there is at least one B to the right

of the rightmost R, divided by

(
n

r

)
.

Since there are only two colours in this part of the problem, the statement “there is at least
one B to the right of the rightmost R” is equivalent to “the final letter in the sequence is
B”. Put in a different way, the red marbles are completely removed first if and only if a
blue marble is removed last. Therefore, the probability that we seek is simply the number

of sequences of R’s and B’s that end in B, divided by

(
n

r

)
. The number of such sequences

is equal to

(
n− 1

r

)
since, to construct all such sequences, we can place one B at the end,

and then place the r R’s in any of the other n − 1 positions. Therefore, the probability

1



that all the red marbles are removed first is(
n− 1

r

)
(
n

r

) =

(n− 1)!

r!(n− r − 1)!
n!

r!(n− r)!

=
(n− 1)!r!(n− r)!

r!(n− r − 1)!n!

=
n− r

n

=
b

r + b

Looking ahead to later parts, notice that this probability is equal to the proportion of the
marbles that are blue.

(b) Consider the following two events:

• Event X: The final marble that is removed is blue and the final green marble is
removed after the final red marble is removed.

• Event Y: The final marble that is removed is green and the final blue marble is
removed after the final red marble is removed.

To say that the red marbles were removed first is the same as saying either Event X
occurred or Event Y occurred. Since Event X has blue as the final marble and Event Y
has green as the final marble, Event X and Event Y cannot occur simultaneously, so this
means that the probability the red marbles are removed first is the sum of the probabilities
of Event X and Event Y. Therefore, we can compute the desired probability by computing
the probabilities of Events X and Y and adding the results together.

For both of these probabilities, we need to count the total number of ways that the marbles
can be removed. As in part (a), we will think of an order that the marbles can be removed

in as a sequence of r R’s, b B’s, and g G’s. There are

(
r + b + g

r

)
ways to place the r

R’s. After doing this, there will be b + g empty positions, so there are

(
b + g

b

)
ways to

place the b B’s. Once the R’s and B’s are placed, there is no choice of where to place the
G’s, so the total number of sequences is(

r + b + g

r

)(
b + g

b

)
=

(r + b + g)!(b + g)!

r!(b + g)!b!g!
=

(r + b + g)!

r!b!g!

Note: This expression is an example of something called a multinomial coefficient, which
is a generalization of a binomial coefficient. We will not use the notation of multinomial
coefficients in this solution, but you might like to read about them if you have not before.

We will compute the number of sequences that end in B and have at least one G to the

right of the rightmost R. This quantity divided by
(r + b + g)!

r!b!g!
is the probability that

Event X occurs.
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There are

(
r + b + g − 1

b− 1

)
ways to place the B’s so that the final letter in the sequence

is B. This is because we need to place one B in the final position, then place the b − 1
remaining B’s in the remaining r + b + g − 1 positions.

For any such placement of the B’s, in order to place the R’s and G’s so that at least one
G occurs to the right of the rightmost R, we need to place a G in the rightmost empty

position. Thus, for every such way to place the B’s, we now have

(
r + g − 1

g − 1

)
ways to

place the G’s. This is because we must place one G in the rightmost position that is not
occupied by a B, and then the remaining g − 1 G’s can be placed in any of the remaining
r + g − 1 positions. Once the B’s and G’s are placed, there is no choice of where to place
the R’s, so the probability that Event X occurs is

r!b!g!

(r + b + g)!

(
r + b + g − 1

b− 1

)(
r + g − 1

g − 1

)
=

r!b!g!

(r + b + g)!
× (r + b + g − 1)!(r + g − 1)!

(b− 1)!(r + g)!(g − 1)!r!

=
bg

(r + b + g)(r + g)

By a very similar calculation, it can be shown that the probability that Event Y occurs is

bg

(r + b + g)(r + b)

and so the probability that all the red marbles are removed from the bag first is

bg

(r + b + g)(r + g)
+

bg

(r + b + g)(r + b)
=

bg

r + b + g

(
1

r + g
+

1

r + b

)

(c) In part (b), we showed that p(r) =
bg

r + b + g

(
1

r + g
+

1

r + b

)
. Following nearly identical

reasoning, it can be shown that

p(b) =
rg

r + b + g

(
1

r + b
+

1

b + g

)
p(g) =

rb

r + b + g

(
1

r + g
+

1

b + g

)
Using the equations above, we will show that p(b)− p(r) is negative. This result will show
that p(r) is greater than p(b). Remember that we are assuming r < b < g in this part.

p(b) − p(r) =
rg

r + b + g

(
1

r + b
+

1

b + g

)
− bg

r + b + g

(
1

r + g
+

1

r + b

)
=

g

r + b + g

(
r

r + b
+

r

b + g
− b

r + g
− b

r + b

)
Since r, b, and g are all positive, the quantity

g

r + b + g
is positive, which means p(b)−p(r)

is negative if and only if
r

r + b
+

r

b + g
− b

r + g
− b

r + b
is negative. Using a common

denominator of (r + b)(b + g)(r + g), we get

r(b + g)(r + g) + r(r + b)(r + g) − b(r + b)(b + g) − b(b + g)(r + g)

(r + b)(b + g)(r + g)
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Noting that the denominator (r + b)(b+ g)(r + g) is also positive, we have that p(b)− p(r)
is negative if and only if the numerator of the fraction above is negative. Manipulating
the numerator, we have

r(b + g)(r + g) + r(r + b)(r + g) − b(r + b)(b + g) − b(b + g)(r + g)

= r(r + g)(b + g + r + b) − b(b + g)(r + b + r + g)

= (r2 + rg)(r + 2b + g) − (b2 + bg)(2r + b + g)

= r3 + 2r2b + r2g + r2g + 2rbg + rg2 − 2rb2 − b3 − b2g − 2rbg − b2g − bg2

= r3 + 2r2b + 2r2g + rg2 − 2rb2 − b3 − 2b2g − bg2

At first, it might seem that there is no hope of understanding the expression above. How-
ever, if we imagine the situation where r = b, then by symmetry we really should have
that p(r) = p(b) (in the problem, we are assuming that r < b, but the equation above is
not aware that we plan to impose this restriction). This means the expression p(b) − p(r)
should evaluate to 0 when r = b, so it should have a factor of r − b. Indeed, if we group
the terms that “look” alike, it is easier to notice the factor of (r − b):

r3 + 2r2b + 2r2g + rg2 − 2rb2 − b3 − 2b2g − bg2

= (r3 − b3) + 2(r2b− rb2) + 2(r2g − b2g) + (rg2 − bg2)

= (r − b)(r2 + rb + b2) + (r − b)2rb + (r − b)2g(r + b) + (r − b)g2

= (r − b)
[
(r2 + rb + b2) + 2rb + 2g(r + b) + g2

]
Since r < b is given, we now have that p(b) − p(r) is negative if and only if the quantity
(r2 + rb + b2) + 2rb + 2g(r + b) + g2 is positive, but each of r, b, and g is positive, so it is
indeed positive!

Therefore, we have that p(b) − p(r) < 0, or p(b) < p(r). Similar calculations can be
used to show that p(g) < p(b). Therefore, the marble colour with the smallest number of
representatives is most likely to be removed first, and the marble colour with the largest
number of representatives is least likely to be removed first.

(d) Let f(r) =
r

r + b + g
, f(b) =

b

r + b + g
, and f(g) =

g

r + b + g
. That is, f(r) is the

proportion of the marbles that are red, and similarly for f(b) and f(g).

From part (b), the probability that all the red marbles are removed first, p(r), is

bg

(r + b + g)(r + g)
+

bg

(r + b + g)(r + b)

Dividing the numerator and denominator of each expression by (r+b+g)2, the probability
above is equal to

bg

(r + b + g)2

r + g

r + b + g

+

bg

(r + b + g)2

r + b

r + b + g

=

b

r + b + g
× g

r + b + g
r

r + b + g
+

g

r + b + g

+

b

r + b + g
× g

r + b + g
r

r + b + g
+

b

r + b + g

=
f(b)f(g)

f(r) + f(g)
+

f(b)f(g)

f(r) + f(b)
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So we have written the probability that all the red marbles are removed first in terms of
the proportions of each of the three colours.

We will now try to explain why the formula above makes sense. Once again, we will think
of a way of drawing the marbles randomly as a sequence of R’s, B’s, and G’s. In any given
position, the proportion of sequences with a B in that position is f(b). In particular, f(b)
is the probability that the final letter in the sequence is B.

The quantity
f(g)

f(r) + f(g)
is equal to the proportion of green marbles among those marbles

that are either red or green. Similar to the reasoning above, this means that if we look at

sequences of R’s, B’s, and G’s the quantity
f(g)

f(r) + f(g)
is the probability that G is the

rightmost letter among R’s and G’s.

The overall rightmost letter being equal to B is independent of the probability that the
rightmost letter among R’s and G’s is G, so the quantity

f(b)f(g)

f(r) + f(g)
= f(b) × f(g)

f(r) + f(g)

is equal to the probability that the rightmost letter in the sequence is a B and among

R’s and G’s, the rightmost letter is G. Similarly, the quantity
f(b)f(g)

f(r) + f(b)
is equal to the

probability that the rightmost letter is G and among R’s and B’s, the rightmost letter
is B. The R’s all occur before the final G and before the final B if and only if one of
these two events occurs, so this explains why the probability that all the red marbles are
removed first is equal to

p(r) =
f(b)f(g)

f(r) + f(g)
+

f(b)f(g)

f(r) + f(b)

This expression is in terms of the proportions of red, blue, and green marbles. Similar
expressions can be computed for p(b) and p(g).
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Problem of the Month
Problem 4: January 2023

For each positive integer k, define a function pk(n) = 1k + 2k + 3k + · · · + nk for each integer n.

That is, pk(n) is the sum of the first n perfect kth powers. It is well known that p1(n) =
n(n + 1)

2
.

(a) Fix a positive integer n. Let S be the set of ordered triples (a, b, c) of integers between 1
and n + 1, inclusive, that also satisfy a < c and b < c. Show that there are exactly p2(n)
elements in the set S.

(b) With S as in part (a), show that there are

(
n + 1

2

)
+ 2

(
n + 1

3

)
elements in S and use this

to show that

p2(n) =
n(n + 1)(2n + 1)

6

(c) For each k, show that there are constants a2, a3, . . . , ak, ak+1 such that

pk(n) = a2

(
n + 1

2

)
+ a3

(
n + 1

3

)
+ · · · + ak

(
n + 1

k

)
+ ak+1

(
n + 1

k + 1

)
for all n.

Note: Actually computing the constants gets more and more difficult as k gets larger. While
you might want to compute them for some small k, in this problem we only intend that you
argue that the constants always exist, not that you deduce exactly what they are.

(d) Use part (c) to show that p3(n) =
n2(n + 1)2

4
and p4(n) =

n(n + 1)(2n + 1)(3n2 + 3n− 1)

30
.

(e) It follows from the fact in part (c) that pk(n) is a polynomial of degree k + 1. With k = 5,
this means there are constants c0, c1, c2, c3, c4, c5, and c6 such that

p5(n) = c0 + c1n + c2n
2 + c3n

3 + c4n
4 + c5n

5 + c6n
6

Use the fact that p5(1) = 1 and p5(n)− p5(n− 1) = n5 for all n ≥ 2 to determine c0 through
c6, and hence, derive a formula for p5(n).

(f) Show that n(n+ 1) is a factor of pk(n) for every positive integer k and that 2n+ 1 is a factor
of pk(n) for every even positive integer k.



Problem of the Month
Problem 4: January 2023

Hint

(a) What are the possible values of c?

(b) How many distinct integers can occur in a triple in S?

(c) Try to generalize the idea in part (c). The constants a2 through ak+1 do not depend on n.

(d) For positive integers u and v with u < v, the usual convention is that

(
u

v

)
= 0. This

convention makes sense for (at least) two reasons. First, there are zero ways to choose v
objects from u distinct objects if u < v, so “u choose v” should be equal to 0. Second, the

formula for

(
u

v

)
given by

(
u

v

)
=

u(u− 1)(u− 2) · · · (u− v + 1)

v!

will have a factor of 0 in the numerator if u < v.

(e) Directly compute an expression for p5(n) − p5(n− 1). It should be a polynomial with coef-
ficients depending on a1 through a6. By equating coefficients with the polynomial n5, solve
for a1 through a6. After these coefficients are known, a0 can be computed from p5(1) = 1.

(f) A polynomial with infinitely many roots must be the constant zero polynomial. Using this
fact, show that pk(n) − pk(n− 1) = nk for all real numbers, not just positive integers. This
means you need to “extend” pk(n) to accept inputs that are not positive integers. Once this
is done, determine the values of pk(0) and pk(−1). To show that 2n + 1 is a factor of pk(n)
for even k, consider the values of pk(−n) when n is a positive integer.



Problem of the Month
Solution to Problem 4: January 2023

(a) Since a and b are positive integers and c is larger than both of them, the smallest value
that c can take is c = 2. The possible values of c are therefore c = 2, c = 3, and so on up
to c = n + 1.

The only triple in S with the property that c = 2 is (1, 1, 2), so there is one triple with
c = 2. The triples in S with c = 3 are (1, 1, 3), (1, 2, 3), (2, 1, 3), and (2, 2, 3), so there are
four triples with c = 3.

In general, if c = r, then a and b can both be any integer from 1 through r − 1 inclusive.
Thus, there are (r − 1) × (r − 1) = (r − 1)2 triples in S with c = r. Since r ranges from 2
through n + 1, there are exactly

12 + 22 + 32 + 42 + · · · + (n− 1)2 + n2 = p2(n)

triples in S.

(b) We will now count the triples in S by considering them according to the number of distinct
integers that occur in the triple. For example, there are two distinct integers in (1, 1, 2)
and three distinct integers in (1, 5, 7).

If (a, b, c) is in S, then there are at most three distinct integers in the triple (since there
are only three integers in total). As well, since a < c, the integers cannot all be equal.
Therefore, there are either two distinct integers or three distinct integers in (a, b, c).

Suppose x, y, and z are three distinct integers between 1 and n + 1 inclusive. Since they
are distinct, one of them is the largest. Assuming z is the largest, the triples (x, y, z) and
(y, x, z) are both in S, and these are the only triples in S that contain the integers x, y,
and z. Therefore, for every way to choose three distinct integers between 1 and n + 1

inclusive, there are two triples in S. This observation means there are 2

(
n + 1

3

)
triples in

S with three distinct integers in them.

Now suppose that x and y are two distinct integers with x < y. Then the only triple in S
that contains exactly the integers x and y is (x, x, y). Thus, for every two distinct integers
between 1 and n + 1 inclusive, there is exactly one triple in S that contains exactly those

two integers. Therefore, there are

(
n + 1

2

)
triples in S with two distinct integers in them.

Therefore, the number of elements in S is

(
n + 1

2

)
+ 2

(
n + 1

3

)
.

1



From part (a),

p2(n) =

(
n + 1

2

)
+ 2

(
n + 1

3

)
=

(n + 1)!

2!(n− 1)!
+ 2

(n + 1)!

3!(n− 2)!

=
(n + 1)n

2
+

2(n + 1)n(n− 1)

6

= n(n + 1)

(
1

2
+

n− 1

3

)
= n(n + 1)

(
3

6
+

2(n− 1)

6

)
=

n(n + 1)(3 + 2n− 2)

6

=
n(n + 1)(2n + 1)

6

(c) Fix a positive integer n. Using the idea from parts (a) and (b), we let Sk be the set of
ordered lists of k + 1 positive integers (x1, x2, x3, . . . , xk, xk+1) with the property that each
integer xi is between 1 and n + 1 inclusive and xk+1 is larger than every other integer in
the list. A list of the form (x1, x2, x3, . . . , xk, xk+1) is called a (k + 1)-tuple.

As in the case with k = 2, it is not possible for a (k + 1)-tuple in Sk to have xk+1 = 1.
This is because the other integers are positive and xk+1 must be the largest integer in the
list (it cannot be “tied” for the largest). The possible values of xk+1 are 2 through n + 1.

For a fixed value of xk+1, say xk+1 = r, if (x1, x2, x3, . . . , xk, xk+1) is in Sk, then x1 through
xk can each be any positive integer less than r, of which there are r − 1. Therefore, the
number of (k + 1)-tuples in Sk with xk+1 = r is (r − 1)2. The possible values of r are 2
through n + 1, so we have that the number of elements in Sk is

1k + 2k + 3k + · · · + (n− 1)k + nk = pk(n)

Following the reasoning of part (b), we now want to count the elements in Sk a different
way. Since xk+1 is the largest integer in the (k + 1)-tuple, there are at least two distinct
integers in every (k + 1)-tuple in Sk. As well, there are at most k + 1 distinct integers in
every (k + 1)-tuple. Suppose we have chosen r distinct positive integers between 1 and
n + 1 inclusive with 2 ≤ r ≤ k + 1. We would like to count the (k + 1)-tuples in Sk that
contain exactly those r integers. For example, suppose k = 4 and r = 3. We need to
count the number of 5-tuples that use exactly three given integers with the largest integer
occurring only in the rightmost position. Suppose the largest integer is C and the other
two are A and B. The 5-tuples in Sk are

(A,A,A,B,C), (A,A,B,A,C), (A,B,A,A,C), (B,A,A,A,C), (B,B,B,A,C),
(B,B,A,B,C), (B,A,B,B,C), (A,B,B,B,C), (A,A,B,B,C), (A,B,A,B,C),
(A,B,B,A,C), (B,A,A,B,C), (B,A,B,A,C), (B,B,A,A,C)

2



and so there are 14 5-tuples in Sk with exactly those three integers. This means that

there are 14

(
n + 1

3

)
5-tuples in Sk that have exactly three distinct integers in them. The

important thing to notice here is that the constant 14 does not depend on n. We could do
a similar count to see how many 9-tuples there are in S8 with exactly five distinct integers.
The combinatorics might be a bit tedious, but in the end, we would find that the number

of 9-tuples in S8 with exactly five distinct integers is some multiple of

(
n + 1

5

)
where the

multiplier does not depend on n.

Putting this together, there must be some constants a2, . . . , ak+1 so that

pk(n) = a2

(
n + 1

2

)
+ a3

(
n + 1

3

)
+ · · · + ak

(
n + 1

k

)
+ ak+1

(
n + 1

k + 1

)
where each coefficient ar is equal to the number of (k+1)-tuples in Sk that contain exactly
a fixed set of r distinct integers.

Put differently, suppose R is a set of r distinct positive integers. Then ar is the number of
(k+ 1)-tuples that satisfy the following three conditions: every integer in the (k+ 1)-tuple
comes from R, every integer in R occurs at least once in the (k + 1)-tuple, and the largest
integer in R occurs exactly once and is in the rightmost position.

Before moving on, we make one final observation. With the convention that

(
u

v

)
= 0

when u < v, the equation above makes sense even when n + 1 is smaller than the bottom
number in the binomial coefficient. For example, if k = 5 and n = 2, then the term

a4

(
n + 1

4

)
= a4

(
3

4

)
is counting the number of 6-tuples consisting of four distinct integers

between 1 and n + 1 = 3 inclusive. There is no way to choose four distinct integers from

the list 1, 2, 3, so there should be zero such 6-tuples, and the fact that

(
3

4

)
= 0 records

this observation.

(d) From part (c), we have that

p3(n) = a2

(
n + 1

2

)
+ a3

(
n + 1

3

)
+ a4

(
n + 1

4

)
for some constants a2, a3, and a4. Using that p3(1) = 13 = 1, we have that

1 = p3(1)

= a2

(
1 + 1

2

)
+ a3

(
1 + 1

3

)
+ a4

(
1 + 1

4

)
= a2

(
2

2

)
+ a3

(
2

3

)
+ a4

(
2

4

)
= a2 + 0 + 0

3



and so a2 = 1. With n = 2, we have p3(2) = 13 + 23 = 9, so

9 = p2(2)

=

(
2 + 1

2

)
+ a3

(
2 + 1

3

)
+ a4

(
2 + 1

4

)
=

(
3

2

)
+ a3

(
3

3

)
+ a4

(
3

4

)
= 3 + a3 + 0

and so a3 = 6. Finally, using n = 3, we have p3(3) = 13 + 23 + 33 = 36, so

36 = p3(3)

=

(
4

2

)
+ 6

(
4

3

)
+ a4

(
4

4

)
= 6 + 6 × 4 + a4

from which it follows that a4 = 6. Recall that a4 is equal to the number of four-tuples in
S3 consisting of a fixed set of four distinct integers. Indeed, the largest integer must go in
the rightmost position, and there are 6 ways to arrange the other three integers, so a4 = 6
makes sense from a combinatorial perspective.

We now have shown that

p3(n) =

(
n + 1

2

)
+ 6

(
n + 1

3

)
+ 6

(
n + 1

4

)
=

(n + 1)n

2
+

6(n + 1)n(n− 1)

6
+

6(n + 1)n(n− 1)(n− 2)

24

and after some simplification, we get that

p3(n) =
n2(n + 1)2

4

We can approach p4(n) similar to how p3(n) was approached above. We start with

p4(n) = a2

(
n + 1

2

)
+ a3

(
n + 1

3

)
+ a4

(
n + 1

4

)
+ a5

(
n + 1

5

)
and then use that p4(1) = 1, p4(2) = 14 + 24 = 17, p4(3) = 14 + 24 + 34 = 98, and
p4(4) = 14 + 24 + 34 + 44 = 354 to solve for a2, a3, a4, and a5. After doing this, we find
that a2 = 1, a3 = 14, a4 = 36, and a5 = 24. Therefore, after some simplification, we get

p4(n) =

(
n + 1

2

)
+ 14

(
n + 1

3

)
+ 36

(
n + 1

4

)
+ 24

(
n + 1

5

)
=

n(n + 1)(2n + 1)(3n2 + 3n− 1)

30

4



(e) Using that p5(n) = c0 + c1n + c2n
2 + c3n

3 + c4n
4 + c5n

5 + c6n
6, we can find a general

expression for p5(n) − p5(n− 1).

n5 = p5(n) − p5(n− 1)

= c0 + c1n + c2n
2 + c3n

3 + c4n
4 + c5n

5 + c6n
6

−
(
c0 + c1(n− 1) + c2(n− 1)2 + c3(n− 1)3 + c4(n− 1)4 + c5(n− 1)5 + c6(n− 1)6

)
= c0 + c1n + c2n

2 + c3n
3 + c4n

4 + c5n
5 + c6n

6

− c0 − c1(n− 1) − c2(n
2 − 2n + 1) − c3(n

3 − 3n2 + 3n− 1)

− c4(n
4 − 4n3 + 6n2 − 4n + 1) − c5(n

5 − 5n4 + 10n3 − 10n2 + 5n− 1)

− c6(n
6 − 6n5 + 15n4 − 20n3 + 15n2 − 6n + 1)

and after collecting like terms, we get

n5 = (c1 − c2 + c3 − c4 + c5 − c6) + (2c2 − 3c3 + 4c4 − 5c5 + 6c6)n

+ (3c3 − 6c4 + 10c5 − 15c6)n
2 + (4c4 − 10c5 + 20c6)n

3

+ (5c5 − 15c6)n
4 + 6c6n

5

We can now equate coefficients to get the system of equations

6c6 = 1

5c5 − 15c6 = 0

4c4 − 10c5 + 20c6 = 0

3c3 − 6c4 + 10c5 − 15c6 = 0

2c2 − 3c3 + 4c4 − 5c5 + 6c6 = 0

c1 − c2 + c3 − c4 + c5 − c6 = 0

From the first equation, we get c6 =
1

6
. Substituting this into the second equation gives

5c5 − 15 × 1

6
= 0 so c5 =

1

2
. Continuing this way, we get that c4 =

5

12
, c3 = 0, c2 = − 1

12
,

and c1 = 0. Therefore

p5(n) = c0 −
1

12
n2 +

5

12
n4 +

1

2
n5 +

1

6
n6

To solve for c0, we can use that p5(1) = 1 to get the equation

1 = c0 −
1

12
+

5

12
+

1

2
+

1

6
= c0 + 1

which means c0 = 0. Finally, we can rearrange p5(n) into a nicer form

p5(n) = − 1

12
n2 +

5

12
n4 +

1

2
n5 +

1

6
n6

=
−n2 + 5n4 + 6n5 + 2n6

12

=
n2(n + 1)2(2n2 + 2n− 1)

12

5



(f) Fix a positive integer k and consider the function pk(n). We observed earlier that pk(n)
is a polynomial in n. While pk(n) is designed to output 1k + 2k + · · · + nk when n is a
positive integer, there is nothing to stop us from “symbolically” evaluating pk(n) when n

is not an integer. For example, even though p1

(
1

4

)
does not have the same meaning as

p1(n) when n is a positive integer (we cannot “add together the first
1

4
positive integers”),

we can still substitute
1

4
into the formula for p1 to get p1

(
1

4

)
=

1
4
× 5

4

2
=

5

32
.

Now consider the function fk(n) = pk(n) − pk(n − 1) − nk where n is allowed to be any
real number. The function fk(n) is the sum/difference of three polynomials, so it is itself
a polynomial. Since pk(n) − pk(n− 1) = nk for all positive integers n, n is a root of fk(n)
for all positive integers n. By the fact in the hint, a polynomial with infinitely many roots
must be the constant zero function, so pk(n) − pk(n− 1) − nk = 0 for all real numbers n.

With n = 1, we get that pk(1) − pk(0) = 1k = 1, but since pk(1) = 1, we have that
1−pk(0) = 1, so pk(0) = 0. Similarly, by considering n = 0, we get that pk(0)−pk(−1) = 0k,
and since pk(0) = 0, we have 0 − pk(−1) = 0, so pk(−1) = 0 as well. We have shown that
0 and −1 are roots of the polynomial pk(n), which shows that n and n + 1 are factors of
pk(n). This means n(n + 1) is a factor of pk(n).

We now suppose that k is even, which means nk = (−n)k for all real numbers n. From
above, we have that pk(0) = pk(−1) = 0. Considering pk(n) − pk(n− 1) = nk at n = −1,
we have that pk(−1) − pk(−2) = (−1)k, and since k is even and pk(−1) = 0, we have
−pk(−2) = 1k or pk(−2) = −1k.

Next, we use pk(n) − pk(n − 1) = nk with n = −2 to get pk(−2) − pk(−3) = (−2)k = 2k,
and since pk(−2) = −1k, this means −pk(−3) = 1k + 2k or pk(−3) = −(1k + 2k).

Continuing this way, we have pk(−3) − pk(−4) = (−3)k = 3k, so −1k − 2k − pk(−4) = 3k,
and so pk(−4) = −(1k + 2k + 3k). We have now shown that pk(−n) = −pk(n− 1) for the
positive integers n = 0, n = 1, n = 2, n = 3, and n = 4. This pattern continues. It can be
proven using mathematical induction that pk(−n) = −pk(n− 1) for all positive integers n.

This means that pk(−n) + pk(n − 1) = 0 for every non-negative integer. Therefore, the
polynomial pk(−n) + pk(n − 1) has infinitely many roots, and so must be equal to 0 for
every real number n.

Taking n =
1

2
, we get pk

(
−1

2

)
+ pk

(
1

2
− 1

)
= 0 which simplifies to 2pk

(
−1

2

)
= 0.

Therefore, −1

2
is a root of pk(n) when k is even. Thus, pk(n) has a factor of n +

1

2
, which

is equivalent to having a factor of 2n + 1 = 2

(
n +

1

2

)
.

6



Problem of the Month
Problem 5: February 2023

The sequence (1, 3, 5, 2, 1, 2, 1) has the property that every integer in the sequence is a divisor of
the sum of the integers adjacent to it. That is, 1 is a divisor of 3, 3 is a divisor of 1 + 5 = 6, 5 is a
divisor of 3 + 2 = 5, and so on.

For n ≥ 3, the sequence (a1, a2, a3, . . . , an) of positive integers is called a splendid sequence of
length n if it satisfies conditions S1, S2, and S3 found below.

S1. a1 is a divisor of a2 and an is a divisor of an−1.

S2. ai is a divisor of ai−1 + ai+1 for each i from 2 through n− 1 inclusive.

S3. There is no prime number that is a divisor of every integer in the sequence.

For example, (1, 3, 5, 2, 1, 2, 1) is a splendid sequence because it satisfies S1, S2, and S3. The
sequence (2, 4, 6, 2) satisfies S1 and S2, but it is not a splendid sequence because it fails S3 since
2 is a divisor of every integer in the sequence.

For n = 2, (a1, a2) is a splendid sequence of length 2 if it satisfies S1 and S3. Mostly for notational
convenience, we also define a splendid sequence of length 1 to be the “sequence” (1). That is, the
only splendid sequence of length 1 consists of a single integer equal to 1.

(a) Show that there is only one splendid sequence of length 2.

(b) Show that there is at least one splendid sequence of every possible length n ≥ 1.

(c) Suppose (a1, a2, a3, . . . , an) is a splendid sequence of length n ≥ 2. Show that for every
integer i with 1 ≤ i ≤ n− 1 there is a positive integer c so that (a1, a2, . . . , ai, c, ai+1, . . . , an)
is a splendid sequence of length n + 1.

(d) Suppose (a1, a2, a3, . . . , an) is a splendid sequence of length n. Show that a1 = an = 1.

(e) For each n ≥ 1, show that there are only finitely many splendid sequences of length n.

(f) Find a closed form for the number of splendid sequences of length n. Your answer should be
an expression in terms of n.

Note: In part (f), we are asking you to find a closed form for the number of splendid sequences,
the existence of which immediately implies that there are only finitely many. Hence, one way to
answer part (e) is to answer part (f). With that said, we decided to include part (e) because it
can be done without part (f) and (at least as far as we can tell) it is quite a bit easier than part
(f). Part (f) is very challenging, so the hint will have more detail than usual.



Problem of the Month
Problem 5: February 2023

Hint

(a) Remember the condition that no prime number can divide every integer in a splendid se-
quence.

(b) Think of an integer that is a divisor of every integer.

(c) Try the positive integer c = ai + ai+1.

(d) Prove that if the divisibility conditions (S1 and S2 in the problem statement) are satisfied
by (a1, a2, a3, . . . , an), then a1 and an must both divide every integer in the sequence.

(e) Try to write down a few splendid sequences of length at least 5. With the hint for (c) in
mind, what do you notice about the largest integer in a splendid sequence? Show that, for
each n, there is a largest possible value that an integer in any splendid sequence of length n
can take. For instance, it can be shown that in a splendid sequence of length n ≥ 2, every
integer must be less than 2n−2.

(f) There is a famous sequence called the Catalan numbers where the nth Catalan number equal

to
1

n + 1

(
2n

n

)
. The Catalan numbers arise in many interesting ways in mathematics. One

such way is that the nth Catalan number is equal to the number of sequences (b1, b2, . . . , bn)
of length n with the following properties.

• Each bk is a positive integer.

• b1 = 1.

• For each k satisfying 1 ≤ k ≤ n − 1, bk+1 ≤ bk + 1. That is, bk+1 is no more than one
more than bk (it is allowed to be less than or equal to bk).

In the solution, such sequences will be called tame sequences. One way to answer this
question is to show that the number of tame sequences of length n−1 is equal to the number
of splendid sequences of length n and use the closed form for the number of tame sequences.
To do this, we suggest trying to devise a way to use a tame sequence of length n − 1 as
“instructions” to construct a splendid sequence of length n. The idea from part (c) will
probably be important.

Note: In the solution, we will provide a proof that the number of tame sequences of length n
is the nth Catalan number. You might want to try to prove this yourself, but we recommend
taking it for granted when trying to solve part (f).



Problem of the Month
Solution to Problem 5: February 2023

Definition 1: For integers a and b, we say that a divides b if there is an integer c with the
property that ac = b. In this case, we write a | b.

The phrases “a is a divisor of b” and “b is a multiple of a” both have the exact same meaning
as “a divides b”. Notice that, by this definition, every integer is a divisor of 0, but the only
divisor of 0 is 0 itself. We give a few facts that will be used in this solution. Their proofs are
not included.

Fact 1: If a and b are positive integers such that a | b, then a ≤ b.

Fact 2: If a, b, and c are integers such that a | b and a | c, then a | (b− c) and a | (b + c).

Fact 3: If a, b, and c are integers such that a | b and b | c, then a | c.

(a) Suppose (a, b) is a splendid sequence. By definition, this means a | b and b | a. Since the
integers in a splendid sequence must be positive, Fact 1 implies that a ≤ b and b ≤ a,
which implies a = b. If p is a prime number such that p | a, then p | b by Fact 3. However,
no prime number can divide both a and b beacuse (a, b) is splendid. Therefore, no prime
number divides a. Similarly, no prime number divides b, and so a = b = 1.

Therefore, the only splendid sequence of length 2 is (1, 1).

(b) There are several “generic” sequences that one might find. The simplest is probably the
sequence (1, 1, 1, . . . , 1). That is, the sequence (a1, a2, a3, . . . , an) with ai = 1 for all i is
always a splendid sequence. This is because no prime number divides 1, and 1 divides
every integer. Another splendid sequence is (1, 2, 3, 4, . . . , n − 1, 1). For each integer k in
this sequence, other than the 1’s on the end and n − 1, the integers next to it are k − 1
and k + 1, so their sum is (k − 1) + (k + 1) = 2k, which is a multiple of k. The integers
next to n− 1 are n− 2 and 1, which have a sum of n− 1.

In the remaining parts of the solution as well as in the Appendix, we will often denote a sequence
by a bold letter. For example, we might refer to the sequence (a1, a2, . . . , an) by x.

(c) Assume that x = (a1, a2, . . . , an) is a splendid sequence. We will show that

y = (a1, a2, . . . , ai, c, ai+1, . . . , an)

is a splendid sequence when c = ai + ai+1.

If some prime number p divides every integer in y, then it also divides every integer in x.
Since x is a splendid sequence, there is no such prime number, so no prime number divides
all of the integers in y.

If i = 1, then y = (a1, c, a2, a3, . . . , an) and c = a1 + a2. Since x is a splendid sequence,
a1 | a2. We also have that a1 | a1, so a1 | (a1 + a2) or a1 | c by Fact 2. Since every integer
divides itself, c | (a1 + a2). To see that a2 | (c + a3), we note that a2 | (a1 + a3) because x
is splendid and a2 | a2 because every integer divides itself. By Fact 2, a2 | (a1 + a2 + a3)
so a2 | (c + a3). The integers a3 through an all have exactly the same neighbours in y as

1



they do in x, which is a splendid sequence, so y satisfies all other divisibility conditions
required for it to be a splendid sequence.

If i = n−1, then y is splendid by a similar argument to the one in the previous paragraph.

If 1 < i < n− 1, then y = (a1, a2, . . . , ai−1, ai, c, ai+1, ai+2, . . . , an). When k < i and when
k > i + 1, ak divides the sum of its neighbours because it has the exact same neighbours
as it did in x. In y, the neighbours of the integer ai are ai−1 and c. Since x is a splendid
sequence, ai | (ai−1+ai+1). We also have that ai | ai, and so by Fact 2, ai | (ai+ai−1+ai+1)
which means ai | (ai−1 + c). By similar reasoning, ai+1 | (c + ai+2). The integer c is equal
to the sum of its neighbours in y by definition, so it also divides the sum of its neighbours.
Therefore, every integer in y divides the sum of its neighbours. We already argued that
no prime number divides every integer in y, so y is a splendid sequence.

(d) Suppose x = (a1, a2, a3, . . . , an) is a splendid sequence. If n = 2, then the solution to part
(a) implies that a1 = an = 1.

Suppose n ≥ 3. By definition, we have that an | an−1 and that an−1 | (an−2 + an). By
Fact 3, an | (an−2 +an). Since an | an, we can apply Fact 2 to get that an | (an−2 +an−an)
which implies that an | an−2.

Since x is splendid, we also have that an−2 | (an−3 + an−1). We have just shown that an
divides an−2, so by Fact 3, an | (an−3 + an−1). We also have that an | an−1, so Fact 2
implies an | (an−3 + an−1 − an−1) or an | an−3. Continuing in this way, we can show that
an | ai for all i with 1 ≤ i ≤ n. By the condition that no prime number can divide every
integer in x, we conclude that an = 1. Essentially the same argument shows that a1 = 1.

(e) Most of the work is to prove these two claims.

Claim 1: If (a1, a2, . . . , an) is a splendid sequence of length n ≥ 3 that contains at least one
integer that is greater than 1, then there is some i with 1 < n such that ai = ai−1+ai+1 and
(a1, a2, . . . , ai−1, ai+1, ai+2, . . . , an) is a splendid sequence. That is, there is an integer in
the sequence that is equal to the sum of its neighbours, and if it is removed, the remaining
shorter sequence is a splendid sequence.

Claim 2: If (a1, a2, . . . , an) is a splendid sequence of length n ≥ 2, then ai ≤ 2n−2 for
every i.

Proof of Claim 1. To prove Claim 1, suppose x = (a1, a2, . . . , an) is a splendid sequence
with at least one integer greater than 1 and let i be such that ai is the largest integer in
the sequence, choosing the rightmost occurrence if there is a “tie”. More precisely, i is the
largest integer with the property that ai ≥ aj for all 1 ≤ j ≤ n.

By part (d), an = a1 = 1, and since there is at least one integer in x that is greater than
1, neither a1 nor an can be the largest integer in x, which means 1 < i < n. The choice
of i ensures that ai−1 ≤ ai and ai+1 ≤ ai. If ai = ai+1, then since ai is the largest integer
in the sequence, this would imply that ai is not the rightmost occurrence of the largest
integer in the sequence. Therefore, we actually have that ai+1 < ai.

The inequalities ai−1 ≤ ai and ai+1 < ai imply that ai−1 + ai+1 < 2ai and since x is
splendid, ai | (ai−1 + ai+1). As well, all integers in a splendid sequence are positive, which
means that ai−1 + ai+1 is a positive multiple of ai that is less than 2ai. The only such
multiple is ai itself, and so ai−1 + ai+1 = ai.
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We have shown that one of the integers in x is equal to the sum of its neighbours. To
finish proving the claim, we need to show that y = (a1, a2, . . . , ai−1, ai+1, ai+2, . . . , an) is
a splendid sequence. In y, only ai−1 and ai+1 have different neighbours than they did
in x, so the divisibility conditions we need to verify are that ai−1 | (ai−2 + ai+1) and
ai+1 | (ai−1 + ai+2)

We know that ai−1 | (ai−2 +ai) and we have just shown that ai = ai−1 +ai+1. Substituting,
we get that ai−1 | (ai−2 + ai−1 + ai+1). By Fact 2, ai−1 | (ai−2 + ai−1 + ai+1 − ai−1) or
ai−1 | (ai−2 +ai+1). A nearly identical argument shows that ai+1 | (ai−1 +ai+2). Therefore,
y satisfies the divisibility conditions.

If a prime number p divides every integer in y, then p | ai−1 and p | ai+1, so p | ai by Fact 2
since ai = ai−1 + ai+1. This would mean p divides every integer in x, which is not the case
since x is splendid.

We will now prove Claim 2 by mathematical induction. The essence of the proof is that,
by Claim 1, the largest integer in a splendid sequence must be the sum of two integers
in a shorter splendid sequence. Therefore, the maximum size of an integer in a splendid
sequence of length n + 1 is at most twice the maximum size of an integer in a splendid
sequence of length n. This means that there is always a fixed upper bound on the size of
integers in a splendid sequence of a fixed length.

Proof of Claim 2. To get an idea of how the induction will work, we first prove this for
n = 2, n = 3, and n = 4. For n = 2, we showed in the solution to part (a) that
the only splendid sequence of length 2 is (1, 1). The largest element in this sequence is
1 = 20 = 22−2 = 2n−2, so the claim holds for n = 2.

Now suppose (a1, a2, a3) is a splendid sequence of length 3. If a1 = a2 = a3 = 1, then every
integer in the sequence is less than 23−2 = 2. Otherwise, since a1 = a3 = 1 by part (d),
Claim 1 implies that a2 = a1 + a3 = 1 + 1 = 2 is the largest integer in the sequence, so all
integers in the sequence are at most 2 = 23−2.

Continuing to n = 4, suppose (a1, a2, a3, a4) is a splendid sequence. Again, if the sequence
consists entirely of 1’s, then ai ≤ 24−2 = 4 for all i. Otherwise, either (a1, a3, a4) is a
splendid sequence of length 3 and a2 = a1 + a3, or (a1, a2, a4) is a splendid sequence of
length 3 and a3 = a2 +a4. Either way, three of the four integers are in a splendid sequence
of length 3, and the fourth is the sum of two integers in a splendid sequence of length
3. We just showed that an integer in a splendid sequence of length 3 is at most 23−2, so
an integer in a splendid sequence of length 4 is at most 23−2 + 23−2 = 2 × 23−2 = 24−2.
Therefore, no integer in the sequence (a1, a2, a3, a4) can exceed 24−2.

Now for the inductive step. Suppose, for some n ≥ 2, that every integer in every splendid
sequence of length n is at most 2n−2. This is our inductive hypothesis. Consider a splen-
did sequence (a1, a2, . . . , an, an+1) of length n + 1. If ai = 1 for all i, then ai ≤ 2n−2

for all i. Otherwise, Claim 1 implies that there is some i so that ai = ai−1 + ai+1

and (a1, a2, . . . , ai−1, ai+1, . . . , an, an+1) is a splendid sequence of length n. By the in-
ductive hypothesis, this means each of a1, a2, a3, . . . , ai−1, ai+1, . . . , an, and an+1 is
at most 2n−2, and since 2n−2 < 2(n+1)−2, each of these integers is at most 2(n+1)−2. For
ai, we have ai = ai−1 + ai+1 and since ai−1 ≤ 2n−2 and ai+1 ≤ 2n−2, we conclude that
ai ≤ 2n−2 + 2n−2 = 2(2n−2) = 2(n+1)−2 as well. We have shown that every integer in a
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splendid sequence of length n + 1 is at most 2(n+1)−1. This completes the induction and
the proof.

By Claim 2, every integer in a splendid sequence of length n is at most 2n−2. There are
only finitely many sequences of length n consisting of positive integers less than or equal
to 2n−2, regardless of whether they are splendid. Therefore, for fixed n, there are only
finitely many splendid sequences of length n.

The proof os part (f) will use some language about sets. Specifically, we will use the language of
injective, surjective, and bijective functions. If you have seen this before, you should be ready
to read the solution to part (f). Otherwise, we recommend reading Appendix 1 first.

(f) As pointed out in the hint, the number of splendid sequences of length n is equal to the

(n−1)st Catalan number. The nth Catalan number is equal to
1

n + 1

(
2n

n

)
, so the number

of splendid sequences of length n is
1

n

(
2n− 2

n− 1

)
. The sequence of Catalan numbers shows

up in many contexts. A useful example for this solution is given in Definition 2.

Definition 2: For each positive integer n ≥ 1, we call a sequence (b1, b2, . . . , bn) of positive
integers a tame sequence if b1 = 1 and bk+1 ≤ bk + 1 for every integer k with 1 ≤ k < n.
In other words, b1 = 1 and every other integer in the sequence is at most 1 more than the
previous integer.

The name tame sequence was made up for the purpose of this solution, but it is known
that the number of tame sequences of length n is equal to the nth Catalan number. There
are proofs of this in various places in the literature. For completeness, we have included a
proof in Appendix 2. It is stated as Claim 5.

Let Tn denote the set of tame sequences of length n and Sn denote the set of splendid
sequences of length n. We will show, for n ≥ 2, that there is a bijection with domain Tn−1

and codomain Sn. By the discussion in Appendix 1, this will show that the number of
splendid sequences of length n is the (n− 1)st Catalan number.

Recall from part (c) that if (a1, a2, . . . , an) is a splendid sequence of length n, then

(a1, a2, a3, . . . , ai, ai + ai+1, ai+1, . . . , an)

is a splendid sequence of length n + 1.

From this point on, it will be notationally useful to prepend a zero at the beginning of
splendid sequences. For example, the sequence (0, 1) will now be the unique splendid
sequence of length 1. The sequence (0, 1, 2, 5, 3, 1) is a splendid sequence of length 5. This
means that a splendid sequence of length n now has n + 1 integers, the first of which is
0. For instance, a1 = 0, a2 = 1, a3 = 2, a4 = 5, a5 = 3, and a6 = 1 is how we would
index the sequence (0, 1, 2, 5, 3, 1) going forward. Notice that the observation from part (c)
mentioned above also works if we insert the sum between the first and second integers, 0
and 1. You should convince yourself of this before moving on.

For each n ≥ 2, we define a function, fn, with domain Tn−1 and codomain Sn. The way
fn works is to use a tame sequence as a list of instructions to build a splendid sequence.
Consider a tame sequence x = (b1, b2, . . . , bn−1) of length n − 1. Starting with (0, 1), the
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unique splendid sequence of length 1, we read x from left to right and each integer in the
tame sequence tells us where to insert a sum to get a longer splendid sequence. Specifically,
in the kth step, the integer bk tells us that we should insert a sum between abk and abk+1

to get a longer splendid sequence.

For example, suppose n = 6 and the tame sequence is x = (1, 2, 3, 2, 1, 1). Start with
(0, 1), which has a1 = 0 and a1 = 1. The first integer in x is 1, so in the first step we
insert the sum between a1 and a2. This means we go from (0, 1) to (0, 0 + 1, 1) = (0, 1, 1).
To start the second step, we reindex to a1 = 0, a2 = 1, and a3 = 1. The next integer
in x is 2, so we insert the sum between a2 and a3 to get (0, 1, 1 + 1, 1) = (0, 1, 2, 1).
The next integer in x is 3, so we insert the sum between the third and fourth integers in
the current splendid sequence to get (0, 1, 2, 2 + 1, 1) = (0, 1, 2, 3, 1). Continuing, we get
(0, 1, 1 + 2, 2, 3, 1) = (0, 1, 3, 2, 3, 1), followed by (0, 0 + 1, 1, 3, 2, 3, 1) = (0, 1, 1, 3, 2, 3, 1),
and finally (0, 0 + 1, 1, 1, 3, 2, 3, 1) = (0, 1, 1, 1, 3, 2, 3, 1). Thus, f7(x) = (0, 1, 1, 1, 3, 2, 3, 1).

By part (c), if x is a tame sequence of length n − 1, then fn(x) is a splendid sequence
of length n. Also note that at the start of the kth step, the splendid sequence has k + 1
integers in it. Because of the way tame sequences are defined, the kth integer in a tame
sequence is at most k, so at each step, the splendid sequence is always long enough for the
instruction to makes sense.

For each n ≥ 2, we will show that the function fn is a bijection. The proof will be by
induction, but we first need a definition and then a useful fact.

Definition 3: For a splendid sequence (a1, a2, a3, . . . , an+1) of length n (remember that
a1 = 0), we say that ai is a peak if ai = ai−1 + ai+1.

By Claim 1 (see the solution to part (e)), every splendid sequence with an integer greater
than 1 has at least one peak. Moreover, if that peak is “removed”, the resulting shorter
sequence is splendid. As well, with our new notation, if there is no integer greater than
1, then the sequence is of the form (0, 1, 1, 1, . . . , 1) and the first (leftmost) 1 is its only
peak. If it is removed, the resulting shorter sequence is also splendid. Indeed, the reason
for introducing the 0 at the beginning was to avoid having to treat the sequence of all 1’s
separately in this part of the argument.

Now for the useful fact:

Claim 3: Suppose y = (a1, a2, . . . , an+1) is a splendid sequence of length n and that
x = (b1, b2, . . . , bn−1) is a tame sequence of length n − 1 such that fn(x) = y. If we let
bn−1 = m, then am+1 is the leftmost peak of y.

A proof of Claim 3 is given at the end. We will now prove by induction that fn is a
bijection for all n ≥ 2.

It was observed in part (a) that the only splendid sequence of length 2 is y = (0, 1, 1).
As well, the only tame sequence of length 2 − 1 = 1 is x = (1). It is easily checked that
f2(x) = y. The sets T1 and S2 each have only one element. There is only one function
between two sets with one element, and it is always a bijection (convincing yourself of this
is a good exercise in understanding definitions). Therefore, f2 is a bijection.

For the inductive hypothesis, we assume for some n ≥ 2 that fn is a bijection.

We will show that fn+1 is a bijection, which means we need to show that it is injective and
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surjective. To show that it is surjective, we assume that y = (a1, a2, . . . , an, an+1, an+2) is
in Sn+1 and let ak be its leftmost peak. By Claim 1 from the solution to part (e), the se-
quence z = (a1, a2, . . . , ak−1, ak+1, . . . , an, an+1, an+2) is in Sn. Since fn is a bijection by the
inductive hypothesis, it is surjective, so there is some tame sequence w = (b1, b2, . . . , bn−1)
in Tn−1 with fn−1(w) = z. For convenience, let m = bn−1.

Recall that the leftmost peak of x is ak. Note that k 6= 1 since a1 = 0 can never be a peak.
Therefore, k ≥ 2 and so k − 1 ≥ 1.

Suppose ar is the leftmost peak of z. If r ≤ k − 2, then ar is a peak of y because ar
has the same neighbours in y and z when r ≤ k − 2. However, ak was chosen to be
the leftmost peak of y, so we cannot have r ≤ k − 2. This means r ≥ k − 1, but by
Claim 3, r = m + 1, so we get k − 1 ≤ m + 1. Combining with 1 ≤ k − 1, we have that
1 ≤ k− 1 ≤ m+ 1 = bn−1 + 1, which means the sequence (b1, b2, . . . , bn−1, k− 1) is a tame
sequence. We will call this tame sequence x.

To recap, the tame sequence x is obtained by appending k−1 to w, the splendid sequence
y is obtained by inserting the sum between the (k−1)st and kth integer in z, and fn(w) = z.
It follows that fn+1(x) = y. We have found x ∈ Tn such that fn+1(x) = y. Since y was
an arbitrary element of Sn+1, this concludes the proof that fn+1 is surjective.

We will now show that fn+1 is injective. To do this, we suppose x = (b1, b2, . . . , bn) and
w = (c1, c2, . . . , cn) are in Tn with fn+1(x) = fn+1(w). We will show that x = w.

Let y = (a1, a2, . . . , an+1, an+2) be such that y = fn+1(x) = fn+1(w). Suppose ak is
the leftmost peak of y. By Claim 3, both cn = k − 1 and bn = k − 1. This shows
that cn = bn. As well, if we set u = (b1, b2, . . . , bn−1) and v = (c1, c2, . . . , cn−1) and
z = (a1, a2, . . . , ak−1, ak+1, . . . , an+1, an+2), then fn(u) = fn(v) = z. By the inductive
hypothesis, fn is bijective, and hence, it is injective, so u = v. This shows that x and w
have the same first n − 1 integers, and since bn = cn as well, we have that x = w, which
concludes the proof that fn+1 is injective.

We have now shown that fn+1 is bijective, which proves that Tn−1 and Sn have the same
number of elements when n ≥ 2. Therefore, the number of splendid sequences of length n
is

1

n

(
2n− 2

n− 1

)
as claimed earlier.

Proof of Claim 3. The proof is by induction on n. It was noted earlier that the only tame
sequence of length 2− 1 = 1 is x = (1) (b1 = 1), the only splendid sequence of length 2 is
y = (0, 1, 1) (a1 = 0, a2 = 1, a3 = 1), and that f2(x) = y. The leftmost peak of y is a2
and 2 = b1 + 1. This shows that Claim 3 is true when n = 2.

For the inductive hypothesis, we suppose, for some n ≥ 2, that if y = (a1, a2, . . . , an, an+1)
is a splendid sequence of length n and x = (b1, b2, . . . , bn−1) is a tame sequence of length
n− 1 such that fn(x) = y, then the leftmost peak of the y is am+1 where m = bn−1.

Suppose y = (a1, a2, . . . , an, an+1, an+2) is a splendid sequence of length n + 1 and that
x = (b1, b2, . . . , bn) is a tame sequence of length n with fn+1(x) = y. Because of how
fn+1 is applied, am+1 is a peak of y. As well, z = (a1, a2, . . . , am, am+2, . . . , an+1, an+2) is

6



a splendid sequence of length n such that fn(w) = z where w = (b1, b2, . . . , bn−1). For
convenience, set bn = m and bn−1 = k. Suppose the leftmost peak of y is ar for some r.
For now, assume r < m + 1. It is not difficult to show that it is impossible for a splendid
sequence to have two consecutive peaks. This means we must have r ≤ m−1 since r must
be at least two less than m + 1. If this happens, ar is also a peak of z because am−1 has
exactly the same neighbours in z and y. By the inductive hypothesis, ak+1 is the leftmost
peak of z, so r = k+1 and we get k+1 ≤ m−1. Since z is a tame sequence, bn ≤ bn−1 +1
or m ≤ k + 1. This implies that m ≤ k + 1 ≤ m − 1 so m ≤ m − 1, which is impossible.
Therefore, we cannot have r < m+ 1, which means am+1 is indeed the leftmost peak of y.
This completes the induction and the proof.

Appendix 1

Suppose X and Y are finite sets, where by “set” we mean an unordered collection of objects.
Suppose there is a “rule” that, for every element in the set X, produces an element in the set Y .
For instance, if the sets were X = {(1, 2), (5, 3), (1,−2)} and Y = {(4, 1), (5, 2), (9, 5)} (both sets
of three ordered pairs), the “rule” might be “square the second entry, then reverse the order”.
With this rule, (1, 2) becomes (4, 1), (5, 3) becomes (9, 5), and (1,−2) becomes (4, 1), so every
element of X is transformed into an element of Y . Such a rule is called a function. The set X
is called its “domain” and Y is called its “codomain”. If the function is named f , we would use
f(x) to denote the function applied to an element x in the domain. You have probably seen
functions before where the domain and codomain are all or part of the set of real numbers, but
the notion of a function applies in a much broader context. Below are three important properties
that functions may (or may not) have.

Injectivity: A function f with domain X and codomain Y is called injective if for every two
elements of the domain, x1 and x2, if x1 6= x2, then f(x1) 6= f(x2). In other words, a function
is injective if its application to two different elements of the domain always gives two different
results. Note that when trying to prove that a function is injective, we typically assume that
f(x1) = f(x2) and deduce that x1 = x2. You might want to think about this logic.

Surjectivity: A function f with domain X and codomain Y is called surjective if for every
y ∈ Y there exists an x ∈ X so that f(x) = y. In other words, a function is surjective if every
element of the codomain is the result of applying f to some element in the domain. [We might
also say that the range equals the codomain to describe surjectivity.]

Bijectivity: A function f is with domain X and codomain Y is called bijective or is a bijection
if it is both injective and surjective.

There is a lot to be said about injective, surjective, and bijective functions, but for us, the
useful observation will be that if X and Y are finite sets and there is a bijective function f with
domain X and codomain Y , then X and Y have the same number of elements. Indeed, if X has
m elements and Y has n elements, then being injective implies that m ≤ n and being surjective
implies that m ≥ n. Thus, being bijective implies that m ≤ n ≤ m, so m = n.

Observe that the example given at the beginning of this appendix is neither injective nor sur-
jective, so it is not bijective. However, X and Y do have the same number of elements. It is
important to keep in mind that we are only claiming that if there is a bijection from X to Y ,
then they have the same number of elements. There are six bijective functions from X to Y ,
the example we gave just happens to not be one of them.
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Appendix 2

We will now show that the number of tame sequences of length n is equal to the nth Catalan

number,
1

n + 1

(
2n

n

)
. The proof relies on the material from Appendix 1. As well, the results

here are well known and proofs of them can be found in the literature.

Definition 4: For each positive integer n, a sequence of 2n integers is called a jagged sequence
of length 2n if properties P1 and P2 hold:

P1 Exactly n of the integers are equal to 1 and exactly n of the integers are equal to −1.

P2 For each integer k with 1 ≤ k ≤ 2n, the sum of the first k integers in the sequence is
non-negative.

Claim 4: There are
1

n + 1

(
2n

n

)
jagged sequences of length 2n.

Proof of Claim 4. Fix a positive integer n. Let X be the set of sequences of 2n integers that
satisfy P1 and fail P2. Also, let Y be the set of sequences of 2n integers, n + 1 of which equal
−1 and n− 1 of which equal 1. We will show that X and Y have the same number of elements.

Suppose x = (a1, a2, . . . , a2n) is in X. Since x fails P2, there must be some k with 1 ≤ k ≤ 2n
and the property that the sum of the first k entries is negative. Let k be the smallest such
position in the sequence. If a1 = −1, then k = 1. This means n of the integers in the list
a2, a3, . . . , a2n are equal to 1, and n− 1 of them are equal to −1. Therefore, the sequence

(a1,−a2,−a3, . . . ,−a2n)

has n + 1 integers equal to −1 and n− 1 integers equal to 1, which means it is in Y .

If k 6= 1, then a1 ≥ 0, a1+a2 ≥ 0, and so on up to a1+a2+· · ·+ak−1 ≥ 0, but a1+a2+· · ·+ak < 0.
Since a1 +a2 + · · ·+ak−1 ≥ 0 but a1 +a2 + · · ·+ak−1 +ak < 0, we must have that ak is negative,
but ak = ±1, so ak = −1. As well, each of the ai are integers, so the two sums above are
integers, which means a1 + a2 + · · · + ak−1 = 0 and a1 + a2 + · · · + ak−1 + ak = −1 (there is
no other way to add −1 to a non negative integer and get a negative integer). The fact that
a1 + a2 + · · ·+ ak−1 = 0 implies that exactly half of the integers in the list a1, . . . , ak−1 are equal
to −1, and so the number of −1’s in (a1, a2, . . . , ak) is one more than the number of 1’s. Since
the number of −1’s and 1’s is equal in x, this means the number of 1’s in (ak+1, . . . , a2n) is one
more than the number of −1’s. All of this implies that

(a1, a2, . . . , ak,−ak+1,−ak+2, . . . ,−a2n)

has two more −1’s than 1’s. Two numbers that differ by 2 and have a sum of 2n must be n− 1
and n + 1, so the sequence above is in Y .

The above work defines a function, that we will call f , with domain X and codomain Y . Specif-
ically, if x = (a1, a2, . . . , a2n) in X and k the smallest integer such that a1 + a2 + · · · + ak < 0,
f(x) = (a1, a2, . . . , ak,−ak+1, . . . ,−a2n). That is, f(x) is the sequence obtained by negating
every integer from ak+1 to the end of the sequence. We will show that f is a bijection.

To see that f is injective, suppose w = (a1, a2, . . . , a2n) and x = (b1, b2, . . . , b2n) are in X
with f(w) = f(x). We suppose that k is the smallest such that a1 + a2 + · · · + ak < 0
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and m is the smallest such that b1 + b2 + · · · + bm < 0. We might as well assume that
k ≤ m. Our assumption says that the sequences (a1, a2, . . . , ak,−ak+1,−ak+1, . . . ,−a2n) and
(b1, b2, . . . , bk,−bm+1,−bm+1, . . . ,−b2n) are equal. Since k ≤ m, this means ai = bi when
1 ≤ i ≤ k and when m + 1 ≤ i ≤ 2n. Observe that a1 + a2 + · · · + ak = b1 + b2 + · · · + bk, and
since a1 + a2 + · · ·+ ak < 0 by assumption, we get that b1 + b2 + · · ·+ bk < 0. This means m ≤ k
as well and so k = m. Since ai = bi when 1 ≤ i ≤ k and k + 1 ≤ i ≤ 2n, we have that ai = bi
for all i. In other words, w = x, so f is injective.

Now suppose y = (c1, c2, c3, . . . , c2n) is a sequence is in Y . Because y ∈ Y , exactly n + 1 of the
integers in y are equal to −1 and n− 1 of them are equal to 1. Consider the list of sums

c1

c1 + c2

c1 + c2 + c3
...

c1 + c2 + c3 + · · ·+ c2n

The first “sum”, c1, is either −1 or 1. The final sum is (n − 1) − (n + 1) = −2. As we move
from one sum to the next in the list above, we add ci for some i, which means the sums either
increase or decrease by 1 as we move down the list. Therefore, there is at least one sum that
equals −1 (it could be the first). Suppose k is the smallest such that c1 + c2 + c3 + · · ·+ ck = −1.
Then the sequence

x = (c1, c2, . . . , ck,−ck+1,−ck+2, . . . , c2n)

is in X and f(x) = y. To see that x ∈ S, we have that c1 + c2 + · · · + ck = −1 and
c1 + c2 + · · · + c2n = −2, ad so it must be that ck+1 + ck+1 + · · · + c2n = −1. Therefore,
c1 + c2 + c3 + · · ·+ ck +(−ck+1)+(−ck+2)+ · · ·+(−c2n) = 0. This means x has the same number
of 1’s and −1’s, which means there are n of each. As well, the sequence fails P2 because the
first k integers have a negative sum. This shows that x ∈ X, and that f(x) = y is essentially by
the definition of x. Therefore, f is surjective, which completes the proof that it is a bijection.

The number of sequences in Y is

(
2n

n + 1

)
. This is because we can choose where to put the −1’s

in

(
2n

n + 1

)
ways, and then there is no choice of where to place the 1’s. By what we have shown,

we now know that there are

(
2n

n + 1

)
sequences in X as well.

We can now compute the number of jagged sequences. The number of sequences of 2n integers

that satisfy P1 is

(
2n

n

)
by reasoning similar to that in the previous paragraph. To get the

number of jagged sequences of length 2n, we need to subtract from

(
2n

n

)
the number of sequences

that satisfy P1 but fail P2, which is exactly the number of sequences in X. Therefore, the number
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of jagged sequences is (
2n

n

)
−

(
2n

n + 1

)
=

(2n)!

n!n!
− (2n)!

(n + 1)!(n− 1)!

=
(2n)!

n!(n− 1)!

(
1

n
− 1

n + 1

)
=

(2n)!

n!(n− 1)!
× 1

n(n + 1)

=
1

n + 1
× (2n)!

n!n!

=
1

n + 1

(
2n

n

)

Claim 5: The number of tame sequences of length n is
1

n + 1

(
2n

n

)
.

Proof of Claim 5. We will find a bijection from the set of jagged sequences of length 2n to the
number of tame sequences of length n.

Suppose x = (a1, a2, . . . , a2n) is jagged and that i1 < i2 < · · · < in are the indices where the 1’s
occur. That is, ai1 = ai2 = · · · = ain = 1 and all other integers in x are equal to −1. We will
now define a sequence y = (b1, b2, b3, . . . , bn) so that bk is the sum of the integers in x from a1
up to and including the kth integer equal to 1. In symbols, bk = a1 + a2 + · · ·+ aik .

Of the first ik integers in x, exactly k of them are equal to 1 and the other ik−k of them are equal
to −1. Therefore, their sum (which is bk by definition), is bk = k− (ik − k) = 2k− ik. Thus, for
a jagged sequence x = (a1, a2, . . . , a2n), we define f(x) to be the sequence (b1, b2, . . . , bn) where
bk = 2k − ik.

We will show that f is a bijection, but we first need to confirm that f(x) is always tame, which
means we need to show that b1 = 1, bk ≥ 1 for all k, and that bk+1 ≤ bk + 1 for all k < n. We
know that a1 = 1 by P2, so this means i1 = 1 and b1 = 2(1)− i1 = 2− 1 = 1. Suppose ik ≥ 2k.
In x, there are only k 1’s up to and including aik , which means that among the first ik integers
in x, there are at least as many −1’s as 1’s. This means the sum of the first ik integers cannot be
positive. Therefore, we must have that ik < 2k, and since both are integers, ik + 1 ≤ 2k, which
rearranges to 1 ≤ 2k− ik, which gives bk ≥ 1. To see that bk+1 ≤ bk + 1, note that ik + 1 ≤ ik+1,
so ik − ik+1 ≤ −1. Then

bk+1 − bk = 2(k + 1)− ik+1 − (2k − ik)

= 2k + 2− ik+1 − 2k + ik

= 2 + ik − ik+1

≤ 2− 1

= 1

and so bk+1 − bk ≤ 1 or bk+1 ≤ bk + 1. This completes the proof that f(x) is tame.

To see that f is injective, notice that bk = 2k − ik can be rearranged to get ik = 2k − bk. In
other words, if f(x) = y, then ik is uniquely determined from bk. This means that from y, the
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positions of the 1’s in x are uniquely determined, so the entirety of x is uniquely determined by
y. This means there is only one x with the property that f(x) = y, so f is injective.

To see that f is surjective, suppose y = (b1, b2, . . . , bn) is a tame sequence. For each k from 1
through n, define ik = 2k− bk, then define x = (a1, a2, . . . , a2n) so that aj = 1 if j = ik for some
k, and aj = −1 otherwise.

That f(x) = y follows by rearranging ik = 2k − bk to get bk = 2k − ik. However, to conclude
that f is surjective, we need to verify that x is indeed a jagged sequence.

By one of the conditions of tameness, b1 = 1, so so we have that i1 = 2(1) − 1 = 1. Using the
assumption that bk+1 ≤ bk + 1 which can be rearranged to bk − bk+1 ≥ −1, we get that

ik+1 − ik = 2(k + 1)− bk+1 − (2k − bk)

= 2k + 2− bk+1 − 2k + bk

= 2 + bk − bk+1

≥ 2 + (−1)

= 1

which means ik+1 − ik ≥ 1 and it follows that ik+1 > ik. Finally, since bn is positive,
in = 2n − bn < 2n. We have shown that 1 = i1 < i2 < · · · < in < 2n. This shows that
all of the ik are distinct, so x satisfies P1.

Rearranging ik = 2k − bk, we get bk = k − (ik − k), and by the reasoning from earlier, this
means the sum of the first ik integers in x (always ending with the kth 1) is equal to bk, which
is positive because y is tame. Now consider the sum a1 + a2 + · · ·+ am for some an arbitrary m
with 1 ≤ m ≤ 2n. If m = ik for some k, then the sum is positive by the reasoning just given.
Otherwise, there is some k for which ik < m < ik+1. Since every integer in x strictly between
aik and aik+1

equals −1 by construction, we must have that

a1 + a2 + · · ·+ am ≥ a1 + a2 + · · ·+ am + am+1 + · · ·+ aik+1−1

because the latter is obtained from the former by adding some (possibly zero) −1’s. We know
that aik+1

= 1 and that

a1 + a2 + · · ·+ am + am+1 + · · ·+ aik+1−1 + aik+1

is positive, so this means a1 + a2 + · · ·+ am ≥ 0.

We have shown that x satisfies P2 as well, so x is a jagged sequence with f(x) = y. Therefore,
f is surjective, which completes the proof that it is bijective. Therefore, the number of tame

sequences of length n is
1

n + 1

(
2n

n

)
.
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Problem of the Month
Additional Information about Problem 5: February 2023

Splendid sequences are part of a much more general curious combinatorial context. Here are a few
definitions:

1. A graph is a collection of vertices (denoted in this document by circles) and edges (lines
connecting some of these circles).

2. Two vertices in a graph connected by an edge are called adjacent.

3. A splendid numbering of a graph is an assignment of a positive integer to each vertex so that

• Each number divides the sum of the integers in the adjacent vertices, and

• the greatest common divisor of all integers is 1.

Below are some examples of splendid numberings of some graphs:

21
6

1 3

1 1 1 2 12

2

1

3

You may notice that a splendid sequence of length n is simply a splendid numbering of the graph
that is a path of length n (the rightmost example above is a path of length 5).

So, given a graph, we can ask the same question as in the problem of the month: How many
splendid numberings are there? Just like splendid sequences, the number of splendid numberings
for any fixed graph is finite! (see part (e) of the problem).

The exact number of splendid numberings is known for paths of length n. This was essentially the
content of part (f) of the problem.

Two other families of graph for which splendid numbers have been studied are n cycles and n-
pointed stars. Rather than defining these generally, the image below has a 6 cycle on the left and
a 6 pointed star on the right. We leave it to the reader to guess the general definition.

A 6 cycle (left) and a 6-pointed star (right)

The number of splendid numberings of an n cycle is known to be

(
2n− 1

n− 1

)
. This was computed

in a paper from 2018 (see reference (1)), which is quite recent!



For an n-pointed star, the number of splendid numberings is closely related to the number of ways
to decompose the number 1 as a sum of the form

1 =
1

k1
+

1

k2
+ · · · +

1

kn

where each ki is a positive integer, which is a very hard problem. In fact, it is currently unknown
how many splendid numberings there are for the 9-pointed star.

This is almost all of what is known at the moment, and counting the number of splendid numberings
(called arithmetical structures in the research community) is an active area of research. In 2020,
for example, the number of splendid numberings for a particular family of graphs called “bidents”
was computed (see reference (2)). It created a new entry in The On-Line Encyclopedia of Integer
Sequences (OEIS)! The new entry is entry number A335676. If you’ve never played around with
the OEIS, it’s definitely worth it. Just make sure you have a few procrastination hours to burn.

As a final note, we should mention that there are many resources out there about Catalan numbers.
For example, Richard P. Stanley’s 2015 book “Catalan Numbers” contains a very long list of
contexts where the Catalan numbers arise.

References

(1) Benjamin Braun et al. “Counting arithmetical structures on paths and cycles”. In: Discrete
Math. 341.10 (2018), pp. 2949-2963

(2) Kassie Archer et al. “Arithmetical structures on bidents”. In: Discrete Math. 343.7 (2020),
pp. 111850, 23



Problem of the Month
Problem 6: March 2023

For a non-negative integer n, define f(n) to be the first digit after the decimal point in the decimal
expansion of

√
n. For example,

√
10 = 3.162277 . . . and so f(10) = 1. Note that f(0) = 0 and

that f(n) = 0 when n is a perfect square. You will likely want a calculator that can compute
square roots for this question.

(a) Compute f(n) for every integer n strictly between 1 and 4 as well as every integer n strictly
between 36 and 49.

(b) Compute f(n) for every integer n strictly between 4 and 9 as well as every integer n strictly
between 49 and 64.

(c) Show that if n is a positive multiple of 5, then each digit from 0 through 9 appears in the
list

f(n2 + 1), f(n2 + 2), f(n2 + 3), . . . , f(n2 + 2n− 1), f(n2 + 2n)

the same number of times.

(d) For each digit d from 0 through 9, determine how many times d occurs in the list

f(1), f(2), f(3), . . . , f(104)

(e) Here are a couple of other things that you might like to think about. No solution will
be provided for either of these questions, but as always, we would love to hear about any
observations you make!

• How are the digits 0 through 9 distributed among the infinite list

f(1), f(2), f(3), f(4), . . .

For example, in the long run, are the ten digits distributed roughly “uniformly”? One
way to make sense of this question is to think about the frequency of each digit among
the list f(1), f(2), f(3), . . . , f(n) for very large n.

• Are there similar patterns to those in the earlier parts of this problem if we consider
the first two digits after the decimal place? What if we consider three or more digits?



Problem of the Month
Problem 6: March 2023

Hint

(a)/(b) There is no hint given for these parts, but it might be useful in later parts to see if you notice
any patterns in the distribution of the possible outputs of the function f .

(c) If n2 < m < (n + 1)2, then f(m) = d is equivalent to n +
d

10
<
√
m < n +

d + 1

10
.

(d) Similar to the result in (c), if n is one more than a multiple of 5, then in the list

f(n2 + 1), f(n2 + 2), . . . , f(n2 + 2n)

every possible value from 0 through 9 appears exactly
n− 1

5
times, with the exception of 4

and 7 which appear
n− 1

5
+ 1 times each. Try to find and prove other similar results.



Problem of the Month
Solution to Problem 6: March 2023

Note: In this solution, we will take for granted that if n is a positive integer that is not a perfect
square, then

√
n is an irrational number.

(a) Since
√

2 ≈ 1.4142 and
√

3 ≈ 1.7320, we have that f(2) = 4 and f(3) = 7.

In the table below, the first column contains the integers n from 37 through 48, the second
column contains

√
n truncated to four digits past the decimal point, and the third column

contains f(n).

n
√
n f(n)

37 6.0827 0
38 6.1644 1
39 6.2449 2
40 6.3245 3
41 6.4031 4
42 6.4807 4
43 6.5574 5
44 6.6332 6
45 6.7082 7
46 6.7823 7
47 6.8556 8
48 6.9282 9

Among the values of f(n) for n from 37 through 48, each integer from 0 through 9 appears
exactly once except for 4 and 7, which appear exactly twice each. Notice that 4 and 7 are
the values of f(2) and f(3), respectively.

(b) Since
√

5 ≈ 2.2360,
√

6 ≈ 2.4494,
√

7 ≈ 2.6457, and
√

8 ≈ 2.8284, we have that f(5) = 2,
f(6) = 4, f(7) = 6, and f(8) = 8.

In the table below, the first column contains the integers n from 50 through 63, the second
column contains

√
n truncated to four digits past the decimal point, and the third column

contains f(n).
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n
√
n f(n)

50 7.0710 0
51 7.1414 1
52 7.2111 2
53 7.2801 2
54 7.3484 3
55 7.4161 4
56 7.4833 4
57 7.5498 5
58 7.6157 6
59 7.6811 6
60 7.7459 7
61 7.8102 8
62 7.8740 8
63 7.9372 9

Similar to part (a), observe that among the values of f(n) for n between 50 and 63 inclusive,
every integer from 0 through 9 appears either once or twice, and the integers that appear
twice are exactly f(5) = 2, f(6) = 4, f(7) = 6, and f(8) = 8.

(c) Suppose m is a positive integer in the list n2 + 1, n2 + 2, . . . , n2 + 2n. This is equivalent
to n2 < m < (n + 1)2, which is equivalent to n <

√
m < n + 1 since m, n, and n + 1 are

non-negative.

Fix an integer d satisfying 0 ≤ d ≤ 9 and assume that m is an integer satisfying both
n2 < m < (n + 1)2 and f(m) = d. That f(m) = d means d is the first digit past the
decimal point in the decimal expansion of

√
m. That

√
m is between n and n + 1 means

the integer part of
√
m is n. Therefore,

√
m is at least

d

10
more than n and at most

d + 1

10
more than n. Since

√
m is between two consecutive perfect squares, it is not a perfect

square, which means
√
m is irrational. Putting this together, we get that

n +
d

10
<
√
m < n +

d + 1

10

where the strict inequalities are justified by the irrationality of
√
m. We are also assuming

that n is a positive multiple of 5, which means there is some positive integer k such that
n = 5k.

The quantities in the chain of inequalities above are all positive, which means(
n +

d

10

)2

<
√
m

2
<

(
n +

d + 1

10

)2

Expanding and substituting n = 5k, we get

25k2 + dk +
d2

100
< m < 25k2 + (d + 1)k +

(d + 1)2

100

We will now count the number of integers that satisfy the inequalities above.
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Since the integer d satisfies 0 ≤ d ≤ 9, we must have that 0 ≤ d2

100
< 1. Therefore,

25k2 + dk +
d2

100
is between the consecutive integers 25k2 + dk and 25k2 + dk + 1, possibly

equal to the smaller of the two but not equal to the larger of the two. Since m is an integer

that is greater than 25k2 + dk +
d2

100
, we conclude that

25k2 + dk + 1 ≤ m

Similarly, 0 ≤ d ≤ 9 implies that 0 <
(d + 1)2

100
≤ 1. This means 25k2 + (d+ 1)k +

(d + 1)2

100
is between the consecutive integers 25k2 + (d+ 1)k and 25k2 + (d+ 1)k + 1, possibly equal
to the larger of the two but not equal to the smaller of the two. Since m is an integer that

is smaller than 25k2 + (d + 1)k +
(d + 1)2

100
, we can conclude that m ≤ 25k2 + (d + 1)k.

Combining this inequality with the inequality from earlier, we now have that

25k2 + dk + 1 ≤ m ≤ 25k2 + (d + 1)k

The number of integers m that satisfy this inequality is

(25k2 + (d + 1)k)− (25k2 + dk) = k

We have now shown the following: For each integer d satisfying 0 ≤ d ≤ 9, there are at
most k integers m in the list n2 + 1, n2 + 2, . . . , n2 + 2n with the property that f(m) = d.
There are 2n integers in the list above and only ten different values that the function f
can output. Since 10k = 2n, there is no possibility other than that f takes every possible

value exactly k =
n

5
times.

(d) To get an idea of how to proceed, we first discuss the results of parts (a), (b), and (c).

In part (a), we saw that for values of m between 12 and 22, the function f takes on every
possible value the same number of times (zero) with the exception of 4 and 7, which occur
one extra time each. For values of m between 62 and 72, the function f takes on every
possible value the same number of times (one) with the exception of 4 and 7, which occur
one extra time each.

Similarly, in part (b) we observed that f takes on every value the same number of times,
with the exceptions of 2, 4, 6, and 8 when m ranges between 22 and 32 as well as between
72 and 82.

The result of part (c) was that if n is a multiple of 5, then f(m) takes on every possible
value the same number of times (with no exceptions) as m ranges over the integers strictly
between n2 and (n + 1)2.

The patterns in part (a) and (b) continue, and there are similar patterns for other ranges
between perfect squares. A bit more precisely, if n is a positive integer, then as m ranges
over the integers between n2 and (n + 1)2, f(m) takes on every possible value the same
number of times, possibly with some exceptions that occur one extra time each. These
exceptional values depend only on the remainder when n is divided by 5.

Even more precisely, the following five claims are true. The claims are numbered to
correspond to remainders after division by 5.
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Claim 0: Suppose n = 5k for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes every value from 0 through 9 exactly k times.

Claim 1: Suppose n = 5k + 1 for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes the values 4 and 7 a total of k + 1 times each
and takes every other value k times.

Claim 2: Suppose n = 5k + 2 for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes the values 2, 4, 6, and 8 a total of k + 1 times
each and takes every other value k times.

Claim 3: Suppose n = 5k + 3 for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes the values 1, 3, 4, 6, 7, and 8 a total of k + 1
times each and takes every other value k times.

Claim 4: Suppose n = 5k + 4 for some integer k ≥ 0. As m ranges over the integers strictly
between n2 and (n + 1)2, f(m) takes the values 1, 2, 3, 4, 5, 6, 7, and 8 a total of
k + 1 times each and takes the values 0 and 9 a total of k times each.

In part (c), we showed that Claim 0 is true. Before proving Claims 1, 2, 3, and 4, we will
answer the actual question which was to determine how many times each digit occurs in
the list

f(1), f(2), f(3), . . . , f(104)

Because 104 is a perfect square, f(0) = f(104) = 0, so we can instead count the number
of times each digit occurs in the slightly different list

f(0), f(1), f(2), . . . , f(104 − 1)

There are 100 perfect squares among the integers from 0 through 104− 1, so there are 100
occurrences of 0 in the list that come from perfect squares.

For every other integer m in the list 0, 1, 2, 3, 4, . . . , 104−1, there are unique integers k and
r with 0 ≤ k ≤ 19 and 0 ≤ r ≤ 4 with the property that (5k + r)2 < m < (5k + r + 1)2.

Suppose d is a non-zero digit. For fixed k and r, as we let m take the values strictly between
(5k+r)2 and (5k+r+1)2, Claim r tells us whether the digit d occurs either k times or k+1
times in that range. We are considering values of m satisfying (5k+r)2 < m < (5k+r+1)2

for every pair (k, r) with 0 ≤ k ≤ 19 and 0 ≤ r ≤ 4. For every pair of the form (k, 0),
we get k occurrences of d (see Claim 0). For every pair of the form (k, 1), we always get
k occurrences or we always get k + 1 occurrences of d, depending on what Claim 1 says
about the digit d. Continuing with this reasoning, the number of occurrences of d in the
list f(0), f(1), f(2), . . . , f(104 − 1) can be expressed in the form

a(0 + 1 + 2 + · · ·+ 18 + 19) + b(1 + 2 + 3 + · · ·+ 19 + 20) = 190a + 210b

where a is the number of values of r for which Claims 0 through 4 say there are k occurrences
of d, and b is the number of values of r for which Claims 0 through 4 say there are k + 1
occurrences of d.

For example, for d = 1, there are k occurrences when r = 0, r = 1, and r = 2, and there
are k + 1 occurrences when r = 3 and r = 4. Therefore, with d = 1, we have a = 3 and
b = 2, so the number of times that d = 1 occurs in the list is 3× 190 + 2× 210 = 990.
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Using Claims 0 through 4, the table below summarizes the count for the remaining non-
zero digits. In the first column, the digit d appears, in the second column the value of a
appears, in the third column, the value of b occurs, and in the fourth column, 190a+ 210b
appears, which is the number of times d appears in the list.

d a b 190a + 210b

1 3 2 990
2 3 2 990
3 3 2 990
4 1 4 1030
5 4 1 970
6 2 3 1010
7 2 3 1010
8 2 3 1010
9 5 0 950

Finally, for d = 0, we already have 100 occurrences of 0 in the list coming from the perfect
squares. Otherwise, we can use the exact same technique as above to count the number
of 0s in the list coming from integers that are not perfect squares. For d = 0, a = 5 and
b = 0, so there are 5(190) + 0(210) + 100 = 1050 occurrences of the digit 0 in the list
f(0), f(1), f(2), . . . , f(104 − 1).

We will now prove Claims 1 through 4.

Suppose k is a non-negative integer, r is 0, 1, 2, 3, or 4, and that d is a digit between
0 and 9 inclusive. We wish to count the number of integers m such that f(m) = d and
(5k + r)2 < m < (5k + r + 1)2. Specifically, we want to show that this number is either k
or k + 1 depending on r and d in the way delineated in Claims 0 through 4.

The condition (5k + r)2 < m < (5k + r + 1)2 is equivalent to 5k + r <
√
m < 5k + r + 1,

and this combined with f(m) = d (note that m is not a perfect square and that 5k + r
and 5k + r + 1 are consecutive integers) is equivalent to

5k + r +
d

10
<
√
m < 5k + r +

(d + 1)

10
.

Since everything is non-negative, everything can be squared to get the equivalent chain of
inequalities

(5k + r)2 +
2(5k + r)d

10
+

d2

100
< m < (5k + r)2 +

2(5k + r)(d + 1)

10
+

(d + 1)2

100
.

After some expansion, we have

(5k + r)2 + kd +
2rd

10
+

d2

100
< m < (5k + r)2 + kd + k +

2r(d + 1)

10
+

(d + 1)2

100
.

We are interested in how many integers m satisfy the chain of inequalities above. Since
(5k + r)2 + kd is an integer, the number of integers m satisfying the inequalities above is
the same as the number of integers m′ that satisfy

2rd

10
+

d2

100
< m′ < k +

2r(d + 1)

10
+

(d + 1)2

100
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and after combining fractions on the left and right, we get

20rd + d2

100
< m′ < k +

20r(d + 1) + (d + 1)2

100
(∗)

Suppose
20rd + d2

100
and

20r(d + 1) + (d + 1)2

100
are both strictly between 0 and 1. Then the

integers m′ satisfying (∗) are precisely the integers 1 through k. More generally, we will
show that whether there are k or k + 1 integers depends on whether or not the quantities
20rd + d2

100
and

20r(d + 1) + (d + 1)2

100
are between the same pair of consecutive integers.

To give an idea of how the argument will proceed, consider the situation when r = 1 and

d = 4. Then
20rd + d2

100
=

96

100
, but

20r(d + 1) + (d + 1)2

100
=

125

100
. Thus, (∗) becomes

96

100
< m′ < k +

125

100

The integers m′ = 1 through m′ = k + 1 satisfy these inequalities, for a total of k + 1
integers.

Observe that

20r(d + 1) + (d + 1)2

100
− 20rd + d2

100
=

(20rd + 20r + d2 + 2d + 1)− (20rd + d2)

100

=
20r + 2d + 1

100

≤ 20(4) + 2(9) + 1

100
(since r ≤ 4, d ≤ 19)

=
99

100

This means the difference between
20rd + d2

100
and

20r(d + 1) + (d + 1)2

100
is less than 1,

which leads to the following two possibilities.

Possibility 1: There is an integer a so that

a ≤ 20rd + d2

100
<

20r(d + 1) + (d + 1)2

100
≤ a + 1

In this case, the integers satisfying (∗) are a + 1, a + 2, a + 3, and so on through a + k for
a total of k integers.

Possibility 2: There is some integer a with the property that

a <
20rd + d2

100
< a + 1 <

20r(d + 1) + (d + 1)2

100
< a + 2

In this case, the integers satisfying (∗) are a + 1 through a + 1 + k, for a total of k + 1
integers.

We have now shown that there will be k + 1 integers satisfying (∗) exactly when there

is an integer strictly between
20rd + d2

100
and

20r(d + 1) + (d + 1)2

100
. Multiplying through

6



by 100, this is equivalent to there being a multiple of 100 strictly between 20rd + d2 and
20r(d + 1) + (d + 1)2

The table below contains the values of 20rd + d2 for every 0 ≤ r ≤ 4 and 0 ≤ d ≤ 9.
The columns after the first are indexed by a value of d from 0 through 9 from left to
right and the rows after the first are indexed by values of r from 0 through 4 from top
to bottom. The cell in the row corresponding to r and the column corresponding to d
contains 20rd + d2. Cells are highlighted if there is a multiple of 100 between the value in
the cell and the value in the cell immediately to its right.

dr 0 1 2 3 4 5 6 7 8 9 10

0 0 1 4 9 16 25 36 49 64 81 100
1 0 21 44 69 96 125 156 189 224 261 300
2 0 41 84 129 176 225 276 329 384 441 500
3 0 61 124 189 256 325 396 469 544 621 700
4 0 81 164 249 336 425 516 609 704 801 900

The highlighted cells correspond to pairs (r, d) for which 20rd + d2 is less than a multiple
of 100 and 20r(d + 1) + (d + 1)2 is greater than that multiple of 100. As noted above,
these correspond to the pairs (r, d) for which k + 1 integers satisfy (∗). For r = 0, we see
no values of d, which gives another proof of Claim 0. For r = 1, the values of d for which
there are k + 1 integers are d = 4 and d = 7, which proves Claim 1. Continuing, the data
in the table above verifies Claims 0 through 4.
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Problem of the Month
Problem 7: April 2023

Let An denote the set of all n-tuples of 0s and 1s. For example, A2 is the set of all ordered pairs
of 0s and 1s or A2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. To improve readability, we will omit the commas
and parentheses from the elements of An. For example, the elements of A3 will be denoted by 000,
001, 010, 011, 100, 101, 110, and 111.

Variables referring to elements of An will be bold lowercase letters. For example, we might refer
to elements in A2 as a, or b, and so on. To refer to the coordinates of elements in An, we will use
square brackets. For example, if a = 11010, an element in A5, then a[1] = 1, a[2] = 1, a[3] = 0,
a[4] = 1, and a[5] = 0.

For two elements a and b in An, the Hamming distance, denoted d(a, b) between a and b is equal
to the number of coordinates where they differ. For example, if a = 11010 and b = 01110, then
d(a, b) = 2 because a[1] 6= b[1] and a[3] 6= b[3], but a[i] = b[i] for i = 2, i = 4, and i = 5. It is
important to convince yourself that d(a, b) = d(b,a) for any a and b.

The notion of a graph was defined in the extra information about the February 2023 problem, but
there are also plenty of places online that have definitions. We will keep things simple here and
define a graph to be a collection of vertices, some of which are connected to each other by edges.
When we draw a graph, a vertex will be represented by a circle and an edge will be represented by
a line segment from one vertex to another. Two examples of graphs are depicted below. The one
on the left has four vertices and the one on the right has eight. Note that two edges intersecting
does not necessarily imply the presence of a vertex.

For each n, we define a graph with 2n vertices called the natural graph of An. In the natural graph
of An, it is possible to label every vertex by exactly one element of An such that there is an edge
between two vertices exactly when their Hamming distance is 1. The two examples above are the
natural graphs of A2 and A3. They are shown again below with their vertices labelled.

00 10

01 11

000 100

001

010 110

101

111011



A walk in a graph from vertex v to vertex w is a sequence of vertices starting at v and ending
at w with the property that there is an edge connecting every pair of consecutive vertices in the
sequence. The length of a walk is the number of edges it uses. For example, let v, w, x, and y
be the vertices labelled by 000, 110, 100, and 010 in the natural graph of A3, respectively. Then
v, x, w and v, y, w are walks of length 2 from v to w. The distance between v and w in a graph is
equal to the shortest possible length of a walk from v to w. In the example above, v and w have
a distance of 2 because there are walks of length 2, but there are no shorter walks from v to w.

(a) Let a and b be elements of An. Show that d(a, b) is equal to the distance between a and b
in the natural graph of An.

(b) For each k with 1 ≤ k ≤ n, determine the number of two-element subsets {a, b} of An that
satisfy d(a, b) = k.

(c) Suppose we were to relabel the vertices of the natural graph of An by permuting the labels.
That is, we keep the graph the same but use the elements of An to label a vertex of the graph
in some other way. For example, in A2, we might leave 00 and 10 where they are and swap
the positions of 01 and 11, as shown.

00 10

01 11

00 10

11 01

When this is done, the distance in the new graph between elements of a and b is not
necessarily equal to d(a, b) any more. The table below has the two-element subsets of A2 in
the first column, d(a, b) in the second column, and their distance in the relabelled graph in
the third column.

{a, b) d(a, b) new distance

{00, 01} 1 2
{00, 10} 1 1
{00, 11} 2 1
{01, 10} 2 1
{01, 11} 1 1
{10, 11} 1 2

Among the four subsets {a, b} with d(a, b) = 1, there are two that have a distance in the
relabelled graph of 1 and two that have a distance in the relabelled graph of 2.

Now for the question: For each n, find a way to permute the elements of An so that the
following happens: Among all two-element subsets {a, b} of An with d(a, b) = 1, there are
the same number with each possible distance in the relabelled graph.



Problem of the Month
Problem 7: April 2023

Hint

(a) Suppose d(a, b) = k for some k. Try to construct a path of length k in the natural graph
from the vertex labelled a to the vertex labelled b.

(b) For fixed a ∈ An, how many b ∈ An have the property that d(a, b) = k?

(c) Find a function that works for n = 2 and use this to build one for n = 3. It might be useful to
think of the natural graph of A2 as a square and the natural graph of A3 as a cube. As well,
a cube can be thought of as two squares on top of each other with vertical edges connecting
corresponding vertices in the top and bottom faces.



Problem of the Month
Solution to Problem 7: April 2023

(a) Suppose a and b are elements in An and that d(a, b) = k for some k. If k = 0, then a = b,
so their distance in the graph is also 0.

Otherwise, a and b differ at exactly k coordinates i1, i2, . . . , ik where i1 < i2 < · · · < ik.
Using the notation introduced in the problem statement, we mean that a[i] 6= b[i] if i is
in the list i1, i2, . . . , ik and a[i] = b[i] otherwise. Notice that the function g(x) = 1 − x
has the property that g(0) = 1 and g(1) = 0, so g switches 1 and 0. We will now define a
sequence a1,a2, . . . ,ak of elements in An. Informally, a1 is obtained from a by leaving all
coordinates alone except a[i1], which gets changed from 0 to 1 or 1 to 0 as appropriate.
Continuing, a2 is obtained from a1 by leaving all coordinates alone except a1[i2], which
gets switched, and this continues for a3, a4, and so on. More formally, for each m ≥ 1
with 1 ≤ m ≤ k we define am as follows.

• am[i] = a[i] if i is not in the list i1, i2, . . . , ik.

• am[i] = g(a[i]) for each i in the list i1, i2, . . . , im.

• am[i] = a[i] for each i in the list im+1, im+2, . . . , ik.

By construction, the list a,a1,a2, . . . ,ak−1,ak is a list in which every pair of elements
differ at exactly one coordinate. Moreover, the list is that which is generated by changing
the coordinates of a that differ from those of b one at a time, from leftmost to rightmost.
This means b = ak, and the above is a walk from a to b. There are k + 1 vertices in this
walk, so there are k edges.

We have constructed a walk from a to b in the natural graph of An that has length k,
which means the distance from a to b in the natural graph is at most k. To see that it is
at least k, we suppose a, c1, c2, . . . , cm−1, b is a walk in the natural graph of An of length
m for some m. Since there are m vertices in this walk in addition to a and two vertices
have an edge between them exactly when they differ at exactly one coordinate, the total
number of coordinates at which a and b (the ends of the walk) can differ is at most m.
Since we know that they differ at exactly k coordinates, we must have that m ≥ k. This
means that any walk from a to b in the natural graph of An has at least k edges.

We have shown that the distance in the natural graph between a and b is at least k and
at most k, which means it is exactly k.

(b) For convenience, in the solution to this part and the solution to part (c), we will refer
to a two element subset as a pair. Since d(a, b) = d(b,a) for any elements a, b ∈ An,
we will say that d(a, b) is the Hamming distance of the pair {a, b} or the pair {a, b} has
Hamming distance d(a, b), and possibly other similar things depending on the grammar
in that particular sentence. Similarly, we might say that {a, b} has distance k in a graph
to mean that the distance between the vertices labelled by a and b is k in that graph.

For a fixed element a ∈ An, an element b ∈ An satisfies d(a, b) = k exactly when it
differs from a at exactly k coordinates. There are n coordinates in total, so there are
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(
n

k

)
possible choices of k coordinates that could be different from a. Therefore, for a

fixed element a ∈ An, there are exactly

(
n

k

)
elements b ∈ An with the property that

d(a, b) = k. There are 2n elements in An and each a ∈ A belongs to exactly

(
n

k

)
pairs

with a Hamming distance of k. This gives a total of 2n ×
(
n

k

)
pairs. However, this total

counts every pair twice, once for each of its two elements. Thus, the number of pairs in

An with a Hamming distance of k is
1

2
2n

(
n

k

)
= 2n−1

(
n

k

)
.

(c) Denote by En the set of pairs {a, b} from An satisfying d(a, b) = 1. From part (b), there

are 2n−1

(
n

1

)
= n2n−1 pairs in En. In the relabelled natural graph of An, we want the

distances of the pairs in En to be equally distributed among all possible distances in the
graph. There are n possible distances between distinct vertices in the graph, so the fact
that n2n−1 is a multiple of n is a good sign.

We want to permute the elements of An in such a way that for each k from 1 through n,

exactly
n2n−1

n
= 2n−1 pairs in En have a distance of k in the relabelled graph.

There are many ways to do this. The approach given here is inductive, starting by exam-
ining A2. Consider the example from the problem statement. In that example, 01 and 11
were switched and 00 and 10 stayed the same

00 10

01 11

00 10

11 01

Although it is not very interesting in A2, there is an observation we can make that will
generalize. The vertices that are connected by horizontal edges in the diagram of the
natural graph of A2 remain connected by an edge after permuting. The vertices in the
top change order but their distance apart does not change. Meanwhile, the vertices that
are connected by a vertical edge are moved to occupy opposite corners of the square so
their distance goes from 1 to 2. While this is only an increase of 1, it will be useful going
forward to think of the vertices connected by vertical edges as having gone from as close
together as possible (connected by an edge) to as far apart as possible.

Now consider the natural graph of A3, which is pictured below.
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000 100

001

010 110

101

111011

There are 12 edges in the graph. After permuting the labels of the graph, we want
12

3
= 4

pairs of adjacent vertices to be sent to adjacent vertices, 4 pairs of adjacent vertices to be
sent to vertices with a distance of 2, and 4 pairs of adjacent vertices to be sent to vertices
with a distance of 3.

Looking at the diagram, we can think of the natural graph of A3 as being composed of
two copies of the natural graph of A2 laid horizontally on top of each other. The labelling
also has some coherence with the labelling of A2. First, label the bottom and top square
as if they were copies of the natural graph of A2, making sure to label vertically-adjacent
vertices in the same way. Next, append a 0 to the right of every label in the bottom layer
and append a 1 to the right of every label in the top layer.

To permute the labels in the way we want, we will first perform the same permutation on
each layer as we did in A2. In each layer, this moves two pairs of labels from adjacent
vertices so that they are at a distance of 2. There are also two pairs of adjacent vertices
in each layer that remain adjacent after permuting. The four pairs of vertically-adjacent
vertices will remain vertically adjacent because we will have performed the exact same
permutation in each layer. At this point, the labels on four pairs of adjacent vertices have
been sent to vertices that are 2 apart and the other 8 pairs of labels remain on adjacent
vertices. The diagram below shows what we have done so far:

000 100

001

010 110

101

111011

000 100

001

110 010

101

011111

The second and final step is to swap the corners in the top layer. This will have the effect
of moving the labels on vertically-adjacent vertices to be as far apart as possible. In a
“cube”, this means they will end up at opposite ends of a “space diagonal”. Swapping the
corners in a layer preserves the distance between all pairs of vertices in that layer. This
means the net effect of the second step is to move four pairs of adjacent vertices so that
they are at a distance of 3. The overall effect is shown below:
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000 100

001

010 110

101

111011

000 100

001

110 010

101

011111

000 100

011

110 010

111

001101

In the table below, the first column has the 12 pairs from E3 and the second column has
the distance of the corresponding pair in the relabelled graph.

{a, b} new distance

{000, 001} 3
{000, 010} 2
{000, 100} 1
{001, 011} 2
{001, 101} 1
{010, 011} 3
{010, 110} 1
{011, 111} 1
{100, 101} 3
{100, 110} 2
{101, 111} 2
{110, 111} 3

As n grows, the natural graph of An gets harder and harder to draw in a useful way, so
we need some notation to help translate the geometric idea into symbols. First, we will
clarify what we actually want.

Suppose f is a function with domain An and codomain An. This means f is a function
that takes elements of An as input and also outputs elements of An. When we talk about
a permutation of An, we really mean a function f with domain and codomain both equal
to An that is a bijection. For a brief discussion about what a bijection is, you can consult
Appendix 1 from the solution to the February 2023 problem. In the context of this solution,
a function from An to An is a permutation if every possible output is attained by exactly
one input. For example, the function f with domain and codomain A2 given by

f(00) = 11

f(01) = 01

f(10) = 00

f(11) = 10

is a bijection from A2 to A2. Every possible output is attained (the four elements of A2

appear on the right side of the displayed equations above) and no output is attained more
than once. If you think about it, every way to order the elements of A2 (a permutation)
corresponds to exactly one such function: choose an order of the elements, then write them
in that order in the second column above. It will not be important for this solution, but
it might help you to understand this connection if you convince yourself that there are
exactly 4! = 24 bijections from A2 to itself.

4



A rearrangement of the labels in the natural graph of An can be thought of as a bijection
from An to itself. If f is such a function, then f(a) is equal to the original label of the
vertex to which the label a is sent by the permutation. For example, the permutation for
A3 corresponding to the relabelling from earlier (shown below)

000 100

001

010 110

101

111011

000 100

011

110 010

111

001101

is given by

f(000) = 000

f(001) = 111

f(010) = 110

f(011) = 001

f(100) = 100

f(101) = 011

f(110) = 010

f(111) = 101

For example, the fourth of the displayed equations above is f(011) = 001 because in the
second diagram 011 appears where 001 originally appeared.

This is an important observation because we can now recognize distance in the relabelled
graph as a Hamming distance. The distance between a and b in the relabelled graph is
equal to the distance between f(a) and f(b) in the original graph. By part (a), this means
the distance between a and b in the relabelled graph is equal to d(f(a), f(b)).

We can now formally articulate what we seek. For each n, we would like a function fn
with domain and codomain both equal to An with the following properties.

• fn is a permutation of An (a bijection).

• Among the n2n−1 pairs {a, b} from En, d(fn(a), fn(b)) takes on each value from 1
through n exactly 2n−1 times.

It may be a good idea to digest what has been said so far, possibly going back to see how
this applies to A2 and A3.

We can now define fn for each n, but the definition will be recursive, so we need a bit
more notation. For an element a in An where n ≥ 1, we will write a|0 to mean the
element of An+1 that is obtained by appending a 0 to the right end of a. For example,
00110|0 = 001100. Similarly, a|1 is the element of An+1 obtained by appending 1 to the
right end of a. Also, we will denote by a the element of An obtained by changing every
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coordinate of a from 0 to 1 or 1 to 0, as appropriate. For example, if a = 0010111, then
a = 1101000.

Starting with n = 1 (which we have not addressed up to this point) we will let f1(a) = a.
That is, f1(a) is the identity function. The elements of A1 are 0 and 1, and f1(0) = 0 and
f1(1) = 1. We now continue recursively. For n ≥ 1, we define fn+1 from fn as follows.

• If a ∈ An+1 is of the form b|0 for some b ∈ An, then fn+1(a) = fn(b)|0.

• If a ∈ An+1 is of the form b|1 for some b ∈ An, then fn+1(a) = fn(b)|1.

Notice that the above instructions indeed explain how to evaluate fn+1 at every element of
An+1 because each element of An+1 can be constructed in exactly one way by appending
either a 0 or a 1 to the right of an element from An. As an example, we will determine
exactly what f2 does to each element in A2. For 00, we have to use the rule in the first
bullet point because the rightmost digit is 0. f1(0) = 0, so we have that f2(00) = 00.
Since the second digit of 10 is also 0 and f1(1) = 1, we get that f2(10) = 10. For 01, we
have to use the rule in the second bullet point. This means f2(01) = f1(0)|1 = 0|1 = 11.
Finally, f2(11) = f1(1)|1 = 1|1 = 01. This is exactly the function from A2 to itself
discussed earlier. We leave it as an exercise to verify that f3 is exactly the permutation of
A3 discussed earlier.

We can now prove by induction that fn does what we want for every n. Before doing
that, we will discuss how this function corresponds to the geometric idea from earlier. The
elements in An+1 can be obtained by taking each element of An and appending a 0 to
the right and a 1 to the right, in a way getting two elements in An+1 from every element
in An. By this reasoning, An+1 can be thought of as two copies of An: elements ending
in 0 and elements ending in 1. If you look at the natural graph of A3 above, these two
copies are exactly the “bottom” and the “top” squares. The way fn+1 is defined is to
operate differently on the two copies of An, since how fn+1(a) is computed depends on the
rightmost digit of a. In other words, it depends on which copy of An a belongs to. If a
has a rightmost digit of 0, then fn+1 essentially does what fn did. This corresponds to the
bottom face of the cube being permuted exactly as the square was. If the rightmost digit
of a is 1, then a is in the other copy, corresponding to the top face of the cube in the case
of A3. In this situation, we apply fn to the element of An obtained by removing the last
digit, just as we would if the rightmost digit were 0. However, we then switch every digit,
and this corresponds to “swapping the diagonals” in A3. Finally, a 1 is appended to the
right of the result, which corresponds to making sure that elements in the top of the cube
stay in the top of the cube during the permutation.

For n = 1, it is an exercise in understanding definitions to see that fn satisfies the given
conditions. We have already established this for n = 2, and n = 3 can be verified by
confirming that f3 is exactly the permutation from earlier that we verified worked.

We now assume, for some n ≥ 1, that fn is a permutation of An with the property that
among pairs {a, b} from En, d(fn(a), fn(b)) takes on every value from 1 through n exactly
2n−1 times. We will show that fn+1 is a permutation of An+1 with the property that
among pairs {a, b} from En+1, d(fn+1(a), fn+1(b)) takes on every value from 1 through
n + 1 exactly 2n times.

To see that fn+1 is a permutation, let a ∈ An be arbitrary. Since fn is a permutation,
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there is a unique element b ∈ An such that fn(b) = a and a unique element c ∈ An such
that fn(c) = a. Using the definition of fn+1, we have fn+1(b|0) = fn(b)|0 = a|0 and
fn+1(c|1) = fn(c)|1 = a|1 = a|1. Since every element in An+1 is of the form a|0 or a|1
for some a ∈ An, we have shown that every element of An+1 is in the range of fn+1. Now
suppose a1,a2,a3, . . . ,a2n+1 are the elements of An+1 (in some order). We have shown
that every element of An+1 appears in the list

fn+1(a1), fn+1(a2), . . . , fn+1(a2n+1)

at least once. There are 2n+1 elements in the list above and 2n+1 elements in An+1, so
every element of An+1 must appear in the list above exactly once. In other words, fn+1 is
a permutation of An+1.

To prove the other fact about fn+1, we will use the fact that d(a, b) = d(a, b) for any a
and b. It is left as an exercise to verify this.

Suppose k is a positive integer such that 1 ≤ k ≤ n. By induction, there are exactly 2n−1

pairs {a, b} in En with d(fn(a), fn(b)) = k. If {a, b} is one of these 2n−1 pairs, we have

d(fn+1(a|0), fn+1(b|0)) = d(fn(a)|0, fn(b)|0)

= d(fn(a), fn(b))

= k

where the second equality is because the elements in question agree in the last coordi-
nate, so their Hamming distance is equal to the Hamming distance between the elements
obtained by removing the rightmost elements. We similarly have that

d(fn+1(a|1), fn+1(b|1)) = d(fn(a)|1, fn(b)|1)

= d(fn(a), fn(b))

= d(fn(a), fn(b))

= k

Therefore, there are 2×2n−1 = 2n pairs {a, b} from En+1 satisfying d(fn+1(a), fn+1(b)) = k
for each 1 ≤ k ≤ n.

Next, for any a ∈ An, we have

d(fn+1(a|0), fn+1(a|1)) = d(fn(a)|0, fn(a)|1)

= d(fn(a), fn(a)) + 1

= n + 1

where the second equality is because we know that the two elements being handed to
d have different rightmost coordinates, so their Hamming distance is one more than the
Hamming distance between the elements obtained by removing the rightmost coordinates.
The third equality is because fn(a) and fn(a) differ in all n coordaintes by definition.

There are 2n elements of An, and each pair {a|0,a|1} is in En+1, so we get 2n pairs from
En+1 such that d(fn+1(a), fn+1(b)) = n + 1. For each k from 1 through n + 1, we have
found 2n pairs {a, b} from En+1 with the property that d(fn+1(a), fn+1(b)) = k. This
completes the proof.

7



Problem of the Month
Problem 8: May 2023

This month’s problem is based on Problem 6 part (b) of the 2023 Euclid contest. Here is a modified
and rephrased version of that problem:

A square is drawn in the plane with vertices at (0, 0), (1, 0), (1, 1), and (0, 1). Two blue lines are
drawn with slope 3, one passing through (0, 0) and the other through (1

3
, 0). Two red lines are

drawn with slope −1
3
, one passing through (0, 1) and the other through (0, 2

3
). What is the area of

the square bounded by the red and blue lines?

The answer to this question is 1
10

. We suggest convincing yourself of this before attempting the
rest of the problem. The fact that this small square has an area exactly one tenth of the larger
square suggests that there is a way to answer this question by showing that exactly 10 squares the
size of the small one should fit into the large square. Let’s explore!

Here is some terminology that we will use in this problem.

Definition: A lattice point is a point (x, y) for which x and y are both integers.

Definition: A 1 × 1 square whose vertices are at lattice points is called a unit lattice square. We
will denote by T the unit lattice square with vertices (0, 0), (1, 0), (1, 1), and (0, 1).

Definition: Lq,p denotes the line segment connecting (0, 0) to the point (q, p). Note that this line
has slope p

q
.

Definition: An m – lattice line is a line with slope m that passes through at least one lattice point.

The next two definitions are more complicated. There are examples given after they are stated.

Definition: The tricky unit square, T, is a modified version of T (see above) with the property
that if a line reaches an edge of T, it “jumps” to the opposite side and continues with the same
slope. For example, if a line reaches the top edge of T, it continues with the same slope from the
bottom edge directly below where it reached the top edge. If a line reaches a vertex of T, then it
has simultaneously reached two edges. In this situation, it continues with the same slope from the
opposite vertex of T.

Definition: Let p
q

be a rational number written in lowest terms. The p
q
– loop on T is the line

passing through (0, 0) with slope p
q
.



Below are diagrams, from left to right, of the 1
2

– loop, the −2
1

– loop, and the 2
5

– loop on T. In
each diagram, equal letters mark places where the line jumps from one side of the square to the
opposite side.

a

bb

a
a

b

b

a
a

bb

cc

d

d

ee

ff

a

Each of the loops above eventually come back to their starting point and repeat. This happens
because p

q
is rational (think about this!). Notice that in the image of the −2

1
– loop (the middle

image), the loop starts at (0, 1) instead of (0, 0). This is because a line of negative slope starting
at (0, 0) (on the bottom edge) immediately jumps to the top edge and continues from (0, 1). It is
worth thinking about how all four vertices of T really represent the same point.

Below is an image of T with the 3
1

– loop in blue and the −1
3

– loop in red. These two loops divide
T into 10 smaller squares. The squares numbered 1, 2, 3, 4, 5, and 6 are split in two pieces each
across edges of T. Notice that both the loops pass thorough the point (0, 0) since the four vertices
of the square are the same point. This means, if we count the four vertices as one intersection
point, the two loops intersect exactly 10 times (count them!). Think about how this compares to
the Euclid problem mentioned earlier.

9

7
8

10

1

1

2

2 3

3

4 4

5 5

6 6

(a) For each pair of loops below, draw T with that pair of loops, count the number of times the
loops intersect, and count the number of squares into which the loops divide T.

(i) The 4
1

– loop and the −1
4

– loop.

(ii) The 2
3

– loop and the −3
2

– loop.

(iii) The 4
3

– loop and the −3
4

– loop.

(iv) The 1
1

– loop and the −1
1

– loop.

In the remaining problems, p and q are positive integers that have no positive divisors in common
other than 1.

(b) How many line segments make up the p
q

– loop?

(c) How many p
q

– lattice lines intersect T?



(d) Explain why the number of points of intersection of the p
q

– loop and the − q
p

– loop on T is
equal to the number of small squares into which the loops divide T. Remember that the four
vertices of T represent the same point.

(e) How many − q
p

– lattice lines intersect Lq,p?

(f) Compute the area of the small squares in T created by the p
q

– loop and the − q
p

– loop. Our
solution will take for granted that these small squares all have the same area, but you might
like to think about how to prove this.



Problem of the Month
Problem 8: May 2023

Hint

(a) When counting, remember that some squares are split into pieces. As well, the four vertices
of T count together as one intersection point.

(b) Relate the number of segments to the number of unit lattice squares through which Lq,p

passes.

(c) Such a line has an equation of the form y =
p

q
x + b. What can you say about f(0) and f(1)

based on the fact that the line intersects T? do not forget about the condition that the line
must pass through at least one lattice point!

(d) Each square has a leftmost vertex.

(e) Similar to the hint for part (c), such a line must have equation y = −q

p
x + b. Try to deduce

restrictions on the value of b from the fact that this line intersects Lq,p.

(f) Since the squares have the same size (though some might be broken into pieces) and T has
area 1, the area of the squares can be computed by computing the number of them. Our
solution will put together the ideas from (b) through (e) to count the squares. Specifically,
the count in part (e) can be related to the number of squares. Remember to be careful with
the four corners of T, which count as one point.



Problem of the Month
Solution to Problem 8: May 2023

The following fact will come in handy later in the solution.

Fact 1: Let p and q be integers with q 6= 0 such that p and q have no positive divisors in
common other than 1. If A and B are distinct lattice points such that the line segment joining
them has slope p

q
, then the distance between A and B is at least

√
p2 + q2.

Proof of Fact 1. Suppose A is the point (a, b) and B is the point (a + s, b + t) where a, b, s,
and t are integers so that the line segment joining A and B has slope p

q
. Then the line segment

joining A and B has slope t
s

= p
q
. By the assumption on p and q, the fraction p

q
is written in

lowest terms, so we must have |t| ≥ |p| and |s| ≥ |q| implying t2 ≥ p2 and s2 ≥ q2. The distance
between A and B is

√
t2 + s2 ≥

√
p2 + q2, which completes the proof.

(a) (i) Below is a picture of the 4
1
–loop (in blue) and the −1

4
–loop (in red) on T.

There are 17 intersection points. Remember that the two loops intersect at (0, 0),
which is the same point as the other three vertices of T.

There are 17 small squares. Of these 17, 9 are whole squares in the middle of T, 4 are
split into two pieces over the horizontal edges of T, and 4 are split over the vertical
edges of T.

(ii) Here is a picture of a 2
3
–loop (in blue) and a −3

2
–loop (in red) on T.

There are 13 intersection points and 13 small squares.

(iii) Here is a picture of a 4
3
–loop (in blue) and a −3

4
–loop (in red) on T.

1



There are 25 intersection points and 25 small squares.

(iv) Here is a picture of a 1
1
–loop (in blue) and a −1

1
–loop (in red) on T.

There are 2 intersection points and 2 small squares. Here the squares are harder to
see, since both of them pass through the edges of T, passing over to the other side.

It is not a coincidence that the number of small squares is equal to the number of
intersection points in all four cases.

(b) Consider the line of slope p
q

through the origin. By Fact 1, (q, p) is the lattice point in the
first quadrant that is closest to the origin. Therefore, there are no lattice points on Lq,p

other than its endpoints. To illustrate the idea in this solution, the diagram below shows
L5,11 along with every unit lattice square through which it passes.

The 11
5

–loop continues to wrap around T until it reaches a corner again. Because of how
T behaves, we can think of the 11

5
–loop as the result of overlaying all of the unit lattice

squares in the diagram above on top of each other. Indeed, if the blue line reaches the top
of the square, it jumps to the bottom with the same x-coordinate and continues with the
same slope. This means that after it jumps, what the line does in T is the same as what
it does as it continues into the adjacent unit lattice square.

This is true in general. So the number of line segments in the p
q
–loop is equal to the number

of unit lattice squares that Lq,p intersects. By “intersects” we mean that the line passes
through some part of the interior of the square and not just a vertex.

Therefore, to count the line segments in the p
q
–loop, we can count the unit lattice squares

through which Lq,p passes. Line segment Lq,p begins in T and passes into a new unit lattice

2



square exactly when it crosses either a vertical line with equation x = a for some integer
a or a horizontal line with equation y = b for some integer b. Since Lq,p passes through no
lattice points other than its endpoints, it will never cross such a vertical and a horizontal
line at the same time. Since Lq,p starts at (0, 0) and ends at (q, p), it must cross q− 1 such
vertical lines and p − 1 such horizontal lines. Adding one to account for the unit square
from which it originates, this means there are (p−1)+(q−1)+1 = p+q−1 line segments
in the p

q
–loop. For the 11

5
–loop, this gives 11 + 5 − 1 = 15 line segments. By counting,

you can verify that there are indeed 15 unit lattice squares in the diagram above. If you
carefully draw the 11

5
–loop, you will see that there are 15 segments.

(c) Since p and q are positive, p
q

is positive. Suppose f(x) = p
q
x + b is a p

q
–lattice line that

intersects T . Then we must have b ≤ 1, otherwise T would be entirely below the graph of
f(x) (remember, its slope is positive). Additionally, we must have that f(1) ≥ 0, otherwise
T would be completely above the graph of f(x).

The inequality f(1) ≥ 0 is equivalent to p
q

+ b ≥ 0, or −p
q
≤ b. Combining with b ≤ 1, we

get −p
q
≤ b ≤ 1, which we will write as −p

q
≤ b ≤ q

q
.

So far, we have not used the fact that f(x) contains at least one lattice point. Suppose
f(x) passes through some lattice point (u, v). That is, u and v are integers and f(u) = v.
Then v = up

q
+ b which can be rearranged to get b = vq−up

q
. This implies that there is some

integer a for which b = a
q
. Substituting into −p

q
≤ b ≤ q

q
, we get

−p

q
≤ a

q
≤ q

q

which is equivalent to −p ≤ a ≤ q. There are exactly p+ q+ 1 integers a that satisfy these
inequalities, so there are p + q + 1 p

q
–lattice lines that intersect through T .

Before moving on, we make the observation that two of the p
q
–lattice lines that intersect

T only pass through the vertices (0, 1) and (1, 0). This means there are actually p + q − 1
p
q
–lattice lines that pass through the interior of T .

(d) Since p 6= 0 and q 6= 0, the loops are neither horizontal nor vertical. Therefore each of
the small squares has a unique left-most vertex, which is the vertex with the smallest
x-coordinate. Each of the small squares has exactly one left-most vertex, and every point
of intersection is the left-most vertex of exactly one square. This means that the number
of intersection points is equal to the number of squares.

Note that this lends some credibility to counting the four vertices as one intersection point.
See, for example, the 3

1
and −1

3
loops from the problem statement. In that example, the

square labelled by 1 is split into two pieces, and its leftmost vertex is represented by all
four vertices of T . It might be useful to think about this for a moment before moving on.

(e) Since p and q are positive, − q
p

is negative. Suppose f(x) = − q
p
x + b is a − q

p
–lattice line

that intersects Lq,p. Since the slope of f(x) is negative, we must have b ≥ 0. Otherwise,
Lq,p would be entirely above the graph of f(x).

For similar reasoning, we also require that f(q) ≤ p, which means − q2

p
+ b ≤ p. This can

be rearranged to b ≤ p2+q2

p
. Combining with b ≥ 0 gives 0 ≤ b ≤ p2+q2

p
. By essentially the

3



same argument that was used in the solution to part (c), b must take the form a
p

for some
integer a. Therefore, we have

0

p
≤ a

p
≤ p2 + q2

q

and there are exactly p2 + q2 + 1 integers a with this property. These lines are all different
and all intersect Lq,p, so the answer is p2 + q2 + 1.

Before moving on, we note that the lines of slope − q
p

that pass through (0, 0) and (q, p)

are − q
p
–lattice lines that intersect Lq,p. Therefore, there are p2 + q2 + 1− 2 = p2 + q2 − 1

points of intersection of − q
p
–lattice lines with Lq,p, excluding the endpoints. We will refer

to this set of p2 + q2 − 1 points several times in the solution to part (f), so we will denote
it by X for convenience.

(f) Let Y be the set of intersection points of the p
q
–loop with the −q

p
–loop, other than the point

represented by the four courners of T. We will show that every point in X corresponds to
exactly one point in Y , thereby showing that X and Y have the same number of elements.
Since there are p2 + q2 − 1 points in X, if we include the point in T represented by the
corners, this will show that the loops have exactly p2 +q2 intersection points in T. By part
(d), this will show that the loops divide T into p2 + q2 small squares.

The rest of the solution is devoted to showing that X and Y have the same number of
elements. We will use the following fact several times. Its proof is not included.

Fact 2: If an m–lattice line is translated a units to the left and b units to the right for
some integers a and b, then the line obtained is also an m–lattice line.

We first observe that every line segment in the p
q
–loop is part of some p

q
–lattice line. To

see why this is true, consider the solution to part (c). It was discussed there that the line
segments of the p

q
–loop can be obtained by overlaying on T the unit lattice squares through

which Lq,p passes. For each such unit lattice square, there are integers a and b so that
the square can be translated a units to the left and b units down in order to land on T .
Therefore, if we translate Lq,p a units to the left and b units down, it will land exactly on
the segment of the p

q
–loop in question. Lq,p is part of a p

q
–lattice line, so by Fact 2 above,

we have shown that every line segment in the p
q
–loop is part of some p

q
–lattice line.

By part (b), there are p + q − 1 segments in the p
q
–loop. By the remark at the end of the

solution to part (c), there are p + q − 1 p
q
–lattice lines that pass through the interior of

T . Each of the segments in the p
q
–loop is in the interior of the square. We conclude that

the segments of the p
q
–loop are exactly the parts of p

q
–lattice lines that pass through the

interior of T .

By very similar reasoning, we can also conclude that the −q
p

–loop is made precisely of the
segments of − q

p
–lattice lines that pass through the interior of T .

Consider a point (u, v) in X and suppose it is inside the unit lattice square with vertices
(a, b), (a+1, b), (a+1, b+1), and (a, b+1). Let f(x) be the − q

p
–lattice line that intersects

Lq,p at (u, v). The point (u− a, v − b) is in T . If we translate f(x) and Lq,p to the left by
a units and down by b units, the resulting lines will intersect at (u− a, v − b). By Fact 2,
translating f(x) in this way results in a − q

p
–lattice line and translating Lq,p results in a

p
q
–lattice line. By the previous argument, these will be segments of the −q

p
and p

q
loops,

4



respectively. Therefore, (u − a, v − b) is a point of intersection of the two loops. This
gives a natural way to translate points of X to points in Y . In symbols, we send (u, v) to
(u− buc , v − bvc).

Suppose that (u, v) and (x, y) are two different points in X. If these points are in different
unit lattice squares, then when they are translated to T , they will end up on different line
segments of the p

q
–loop, so they cannot possibly be translated to the same point in Y . If

they are in the same unit lattice square, then they will be translated to the left and down
by exactly the same amount, so they will end up in different places in T . Either way,
we can conclude that different points in X are sent to different points in Y by the rule
described in the previous paragraph.

Suppose (u, v) is a point in Y . This point is on some line segment of the p
q
–loop, and we

have argued earlier that these segments come from translating unit lattice squares through
which Lq,p passes (and taking the parts of Lq,p along for the ride). Suppose the segment on
which (u, v) lies comes from the unit lattice square with vertices (a, b), (a+1, b), (a+1, b+1),
and (a, b + 1) and call this square S. The point (a + u, b + v) is in S and lies on Lq,p.

We showed earlier that every line segment on the −q
p

–loop is part of some − q
p
–lattice line.

Let f(x) be the − q
p
–lattice line on which (u, v) lies. If we translate f(x) to the right by a

units and up by b units, the result will be a new − q
p
–lattice line by Fact 2. Moreover, this

line will pass through (u + a, v + b), which also lies on Lq,p. Therefore, (u + a, v + b) is a
point in X that is inside the square S. If we translate (u + a, v + b) to the left by a and
down by b, it will be sent to (u, v) by construction.

We have shown that each of the p2 + q2 − 1 points in X corresponds to exactly one point
in Y . As explained earlier, if we consider the four corners of T as one intersection point,
then we get a total of p2 + q2 intersection points of the two loops.

As mentioned in the problem, we are taking for granted that the squares all have the same
size. This means that each of them has an area of exactly 1

p2+q2
. Referring back to the

Euclid problem from the beginning, we were dealing with the situation where p = 3 and
q = 1, so the area of the squares is 1

32+12
= 1

10
.
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