
Problem of the Month
Solution to Problem 6: March 2024

(a) Notice that f(2) = 24 − 2(2)3 − 2(2)2 + 8 = 16 − 16 − 8 + 8 = 0, so 2 is a root of f(x).
This means (x− 2) is a factor of f(x). Factoring gives f(x) = (x− 2)(x3 − 2x− 4). Now
evaluating 23 − 2(2)− 4 = 8− 4− 4 = 0, we get that 2 is a root of x3 − 2x− 4, so (x− 2)
is a factor of x3 − 2x− 4. Factoring gives x3 − 2x− 4 = (x− 2)(x2 + 2x+ 2).

Applying the quadratic formula to x2 + 2x+ 2 gives

−2±
√

22 − 4(2)

2
=

−2±
√
−4

2
=

−2± 2i

2
= −1± i

So the roots of f(x) are 2, −1 + i, and −1− i with 2 appearing as a repeated root.

(b) This polynomial has no real roots, but notice that g(x) = x4 + 2x2 + 1 = (x2 + 1)2. The
roots of x2 +1 are ±i, so the only roots of g(x) are i and −i. In fact, g(x) can be factored
as g(x) = (x− i)2(x+ i)2 which shows that each of these two roots are repeated roots.

(c) We can use a difference of square to get that h(x) = (x2 + 2)(x2 − 2). The roots of x2 − 2
are

√
2 and −

√
2. The roots of x2 + 2 are i

√
2 and −i

√
2. Thus, h(x) has four distinct

roots (no repeated roots), two of which are real and two of which are not real.

Notation: In several of the remaining solutions, we will use the word monic to describe a
polynomial with a leading coefficient of 1. One of the main observations about monic polynomials
is that if p(x) is a polynomial with leading coefficient a ̸= 0, then 1

a
p(x) is a monic polynomial

of the same degree with exactly the same roots as p(x). We will leave the following fact as an
exercise: If p(x) is a reducible monic polynomial, then p(x) factors as the product of two monic
polynomials of degree at least 1.

(d) (i) The polynomial is irreducible. Suppose x2− 2 is reducible. Since the polynomial
is monic, there must be monic rational polynomials p(x) and q(x) of degree at least
1 such that p(x)q(x) = x2 − 2. Since p(x) and q(x) both have degree at least 1 and
their product has degree 2, they must both have degree exactly 1.

Therefore, there are rational numbers a and b such that p(x) = x+a and q(x) = x+b,
so x2− 2 = (x+a)(x+ b). Expanding, we get x2− 2 = x2+(a+ b)x+ab. Comparing
coefficients, a + b = 0 or a = −b, and ab = −2. Substituting a = −b into ab = −2
gives −b2 = −2 or b2 = 2. It is well known that no rational number b has the property
that b2 = 2, and so there is a problem. We conclude that x2 − 2 cannot be factored
into the product of two rational polynomials both with positive degree.

Observation: It is important to observe that we have specifically shown that x2 − 2
does not factor over Q. If we allow for any real coefficients, we easily get that x2−2 =
(x−

√
2)(x+

√
2) which is a perfectly good factorization into a product of polynomials

with real coefficients. Extending the language defined in the problem, we would say
that while x2 − 2 is irreducible over Q, it is reducible over R.

(ii) The polynomial is reducible. Checking for rational roots and then factoring, one
finds that x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3).
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(iii) The polynomial is irreducible. If a cubic polynomial is equal to the product of
polynomials p(x) and q(x) each with degree at least 1, then one of them must be
linear and the other must be quadratic. This is because 1 + 2 is the only way to
express 3 (the degree) as the sum of positive integers. Since x3+x+1 is monic, there
must be rational numbers a, b, and c so that x3 + x + 1 = (x + a)(x2 + bx + c). Of
course, this shows that −a is a rational root, so we get the following useful fact that
is special to cubics (and quadratics): A cubic polynomial is reducible over Q if and
only if it has a rational root.

By the rational root theorem, 1 and −1 are the only candidates for a rational root of
x3 + x+ 1. Neither is a root, so the polynomial has no rational roots. Therefore, by
the argument above, the polynomial is irreducible.

(iv) The polynomial is irreducible. Every linear polynomial is irreducible. This is
because the product of two polynomials of positive degree must have degree at least
2, so a polynomial of degree less than 2 cannot possibly be expressed as the product
of two polynomials of positive degree.

(v) The polynomial is reducible. Observe that x4+3x2+2 = (x2+1)(x2+2), and so
x4 + 3x2 + 2 can be expressed as the product of two rational polynomials of positive
degree.

The roots of the polynomial are i, −i, i
√
2 and −i

√
2, none of which are real. In part

(iii) above, it was noted that a rational cubic is irreducible over Q if and only if it
has a rational root. This example shows that this is special property of polynomials
of low degree since x4 + 3x2 + 2 is reducible, but it does not have any rational roots.

(vi) The polynomial is irreducible. If x4+1 = 0, then (x2)2 = −1, which is impossible
for a real number x. Therefore, x4+1 has no rational roots (since it has no real roots).

If x4 + 1 factors as the product of two rational polynomials of positive degree, then
it must be the product of a linear with a cubic, or the product of two quadratics.
The polynomial has no rational root, so it has no linear factor, which means the only
remaining possibility is that x4 + 1 is the product of two rational quadratics. As
mentioned earlier, if a monic polynomial factors, then it factors as the product monic
polynomials.

We will assume that a, b, c, and d are real numbers such that x4 + 1 = (x2 + ax +
b)(x2 + cx+ d) and deduce that these numbers cannot all be rational.

Expanding, we have

x4 + 1 = x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd

and by comparing coefficients, we get

a+ c = 0 (1)

ac+ b+ d = 0 (2)

ad+ bc = 0 (3)

bd = 1 (4)
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From Equation (1), we get a = −c and so we can substitute into Equations (2) and
(3) above to get

−c2 + b+ d = 0 (2’)

−cd+ bc = 0 (3’)

If c = 0, then Equation (2’) implies b = −d, and substituting into Equation (4) gives
−d2 = 1 or d2 = −1. This means d = i or d = −i, neither of which is rational.

If c ̸= 0, then we can divide through by c in Equation (3’) to get −d+ b = 0 or b = d.
Equation (4) now implies that b2 = d2 = 1, so either b = d = 1 or b = d = −1.

If b = d = 1, then Equation (2’) gives −c2 + 2 = 0 or c2 = 2, so c = ±
√
2. Either

way, c is irrational.

If b = d = −1, then Equation (2’) gives c2 = −2 and so c = ±i
√
2, both of which are

irrational.

We have exhausted all possibilities and deduced that at least one of a, b, c, and d
must be irrational in all cases, so we have shown that x4 + 1 cannot possibly factor
as the product of two rational quadratic polynomials.

If you look a bit more closely at the case work above, it actually shows that x4 + 1
has the following three different factorizations:

x4+1 = (x2+i)(x2−i) = (x2+
√
2x+1)(x2−

√
2x+1) = (x2−i

√
2x−1)(x2+i

√
2x−1)

but none of them are factorizations into rational polynomials.

(e) The real number
√
2 is algebraic because it is a root of the rational polynomial x2 − 2.

To find a rational polynomial to which 1+ 3
√
2 is a root, we write r = 1+ 3

√
2 and rearrange

to get r− 1 = 3
√
2. Cubing both sides, we get r3− 3r2+3r− 1 = 2. We can rearrange this

to see that r3 − 3r2 +3r− 3 = 0, which shows that r = 1+ 3
√
2 is a root of the polynomial

x3 − 3x2 + 3x− 3, which is a rational cubic.

Let α = 1 + 2i and β = 1 − 2i. Notice that α + β = 2 and αβ = (1 + 2i)(1 − 2i) =
12 − (2i)2 = 5. The polynomial (x − α)(x − β) = x2 − (α + β)x + αβ = x2 − 2x + 5, a
rational quadratic, has α = 1 + 2i as a root by construction.

For
√
2+

√
3, we will use a similar trick to that which was used for 1+ 3

√
2. Set r =

√
2+

√
3

and rearrange to get r−
√
2 =

√
3. Squaring both sides gives r2− 2

√
2r+2 = 3 which can

be rearranged to get r2 − 1 = 2
√
2r. Squaring both sides again gives r4 − 2r2 + 1 = 8r2,

which can be rearranged to r4− 10r2+1 = 0. Therefore,
√
2+

√
3 is a root of the rational

polynomial x4 − 10x2 + 1.

The degrees of
√
2, 1 + 3

√
2, 1 + 2i, and

√
2 +

√
3 are 2, 3, 2, and 4, respectively. We will

justify this at the end of the solution to part (j).

(f) Suppose α is an algebraic number of degree d. It follows from the remark before the
solution to part (d) that there is a rational monic polynomial p(x) of degree d such that
p(α) = 0.
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Suppose p(x) is reducible over Q. Then there are rational polynomials f(x) and g(x) such
that p(x) = f(x)g(x) and both f(x) and g(x) have degree at least 1. Since the sum of the
degrees of f(x) and g(x) is d, it follows that each of them has degree less than d.

Since p(α)=0, we get 0 = f(α)g(α), and so either f(α) = 0 or g(α) = 0. This is impossible
since d is the smallest positive degree of a rational polynomial having α as a root.

This shows p(x) is irreducible, so we have shown that there exists a monic irreducible
rational polynomial of degree d with p(α) = 0.

Now we want to show that that is only one such polynomial. To do this, suppose p(x)
and q(x) are monic irreducible polynomials of degree d such that p(α) = q(α) = 0. Let
h(x) = p(x)−q(x). Since p(x) and q(x) have the same leading term, xd, the degree of h(x)
must be less than d. As well, h(α) = p(α)− q(α) = 0, so α is a root of a polynomial with
degree less than d. By the definition of d, h(x) cannot have positive degree, so it must
be constant. The only constant polynomial with roots is the constant zero polynomial, so
h(x) = p(x)− q(x) = 0 for all x, from which it follows that p(x) = q(x).

We have assumed that two monic irreducible polynomials of degree d have α as a root and
deduced that they are the same polynomial. We conclude that there is a unique monic
irreducible polynomial m(x) of degree d such that m(α) = 0.

(g) By looking for rational roots and removing corresponding factors, we arrive at

f(x) = (x+ 1)(x− 2)2(x4 + 2x2 + 1)

In part (b), it was observed that x4 + 2x2 + 1 = (x2 + 1)2, so f(x) factors completely as

f(x) = (x+ 1)(x− 2)2(x− i)2(x+ i)2

and so the values of r1, r2, r3, r4, r5, r6, r7 are −1, 2, 2, i, i, −i, −i.

(h) (i) Expanding (x+ y)n for each n from 2 through 7, we have

(x+ y)7 = x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x+ y)2 = x2 + 2xy + y2

Substituting x+ y for x in f(x), we get

f(x+ y) = (x+ y)7 − 3(x+ y)6 + 2(x+ y)5 − 2(x+ y)4 + (x+ y)3 + 5(x+ y)2 + 4

Without actually substituting the expressions for (x+y)2 through (x+y)7 from above,
we can imagine what will happen if we do. The polynomial f0(x) is equal to the sum
of the terms we would get that have no factor of y. The only term in (x + y)n that
does not have a factor of y is xn. Therefore, we can conclude that

f0(x) = x7 − 3x6 + 2x5 − 2x4 + x3 + 5x2 + 4
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which is f(x), the roots of which were found in the previous part.

The polynomial f1(x) has the property that yf1(x) is the sum of all terms that have
a factor of y and the exponent of y is exactly 1. In (x + y)n, this term is always of
the form nxn−1y.

Therefore, we can collect all terms that have exactly one factor of y in f(x+y) to get

yf1(x) = 7x6y − 3(6x5y) + 2(5x4y)− 2(4x3y) + (3x2y) + 5(2xy)

= y(7x6 − 18x5 + 10x4 − 8x3 + 3x2 + 10x)

So we conclude that f1(x) = 7x6 − 18x5 + 10x4 − 8x3 + 3x2 + 10x.

After checking for rational roots, one finds that f1(x) = x(x− 2)(7x4 − 4x3 + 2x2 −
4x− 5) and that h(x) = 7x4 − 4x3 + 2x2 − 4x− 5 has no rational roots. However, a
bit of experimentation or observation leads to

h(i) = 7(i)4 − 4i3 + 2i2 − 4i− 5

= 7(−1)2 − 4(−1)i+ 2(−1)− 4i− 5

= 7 + 4i− 2− 4i− 5

= 0

and one can check that h(−i) = 0 as well. Thus, we should be able to factor (x− i)
and (x + i) out of h(x), but (x − i)(x + i) = x2 + 1, so we can factor x2 + 1 out of
h(x) and avoid arithmetic with complex numbers. After doing this, we find h(x) =

(x2+1)(7x2−4x−5). Using the quadratic formula on 7x2−4x−5 gives x =
2±

√
39

7
.

We have now found all roots of f1(x) and they are 0, 2, i, −i,
2 +

√
39

7
, and

2−
√
39

7
.

Observe that 2, i, and −i were all repeated roots of f(x) (from part (g)) and they all
appear as roots of f1(x).

(ii) In general, f(x+ y) can be expressed as

f(x+ y) = f(x) + f1(x)y +X

where X is some expression that is the sum of products of scalars, powers of x, and
powers of y. However, since f(x) and f1(x)y are the collections of terms that have
no factor of y and exactly one factor of y, we can conclude that X has a factor of y2.
Therefore, we can refine this observation to get that f(x+y) = f(x)+f1(x)y+y2f(x, y)
where f(x, y) is the sum of terms that are products of scalars, powers of x, and powers
of y. Note that if f(x) is constant, then f1(x) and f(x, y) will be 0, and if f(x) has
degree 1, then f(x, y) will be 0.

Assume that r is a root of f(x).

We will first show that if r is a repeated root of f(x), then r must be a root of f1(x).
To do that, we assume that r is a repeated root of f(x). By definition, this means
there is a polynomial p(x) such that f(x) = (x− r)2p(x).

Expanding p(x+ y), we get

p(x+ y) = p(x) + p1(x)y + y2p(x, y)
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Then we have

f(x+ y) = (x+ y − r)2p(x+ y)

= [(x− r) + y]2[p(x) + p1(x)y + y2p(x, y)]

= [(x− r)2 + 2y(x− r) + y2][p(x) + p1(x)y + y2p(x, y)]

= p(x)(x− r)2 + y[2(x− r)p(x) + p1(x)(x− r)2] + y2h(x, y)

where h(x, y) is some expression in x and y. Therefore, when we expand f(x + y),
the sum of the terms with y1 as their power of y is y[2(x − r)p(x) + p1(x)(x − r)2].
By definition, this sum also equals yf1(x), so f1(x) = 2(x − r)p(x) + p1(x)(x − r)2.
Substituting x = r into this equation gives f1(r) = 2(r − r)p(r) + p1(r)(r − r)2 = 0.
Therefore, r is a root of f1(x).

We now assume that r is a root of both f(x) and f1(x) and will deduce that (x− r)2

is a factor of f(x).

Since we are assuming that f(x) has a root of r, we can write f(x) = p(x)(x− r) for
some polynomial p(x). Then

f(x+ y) = (x+ y − r)p(x+ y)

= [(x− r) + y][p(x) + p1(x)y + y2p(x, y)]

= p(x)(x− r) + y[p(x) + (x− r)p1(x)] + y2k(x, y)

where k(x, y) is some expression in x and y. Similar to the argument for the other
direction, this implies yf1(x) = y[p(x)+(x−r)p1(x)], hence f1(x) = p(x)+(x−r)p1(x).
We are assuming that f1(r) = 0, so we can substitute x = r on both sides of this
equation to get f1(r) = p(r) + (r − r)p1(r) or 0 = p(r) + 0. Therefore, p(r) = 0,
so there is some polynomial q(x) such that p(x) = q(x)(x − r). Substituting into
f(x) = p(x)(x − r), we get f(x) = q(x)(x − r)2, and so r is a repeated root of f(x)
by definition.

A proof using calculus. If you take a minute to verify that the polynomial f1(x) is
the derivative of polynomial f(x), denoted by f ′(x), then we can reframe this result
as follows: Suppose that f(x) is a polynomial and that r is a root of f(x). Prove that
r is a repeated root of f(x) if and only if r is a root of f ′(x).

Assume that r is a root of f(x).

Suppose that r is a repeated root of f(x). Then f(x) = p(x)(x − r)2 for some
polynomial p(x). By the product rule, f ′(x) = p′(x)(x − r)2 + 2p(x)(x − r), so
f ′(r) = p′(r)(r − r)2 + 2p(r)(r − r) = 0. Therefore, r is a root of f ′(x).

Now suppose that r is a root of f ′(x). Since r is a root of f(x), there is a polynomial
p(x) such that f(x) = p(x)(x− r). By the product rule, f ′(x) = p′(x)(x− r) + p(x).
Substituting x = r gives f ′(r) = p′(r)(r−r)+p(r) and since f ′(r) = 0 by assumption,
this implies 0 = 0+ p(r), so r is a root of p(x). Therefore, there is a polynomial q(x)
such that p(x) = q(x)(x − r). Substituting gives f(x) = p(x)(x − r) = q(x)(x − r)2,
so r is a repeated root of f(x).

(j) Suppose p(x) and q(x) are irreducible rational polynomials with a root, α, in common.
Assume that p(x) had degree n. We know that α is an algebraic number, so let m(x) be
its minimal polynomial.
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By the division algorithm for polynomials, there are polynomials f(x) and r(x) such that
p(x) = f(x)m(x) + r(x) and the degree of r(x) is less than the degree of m(x). By the
definition of the minimal polynomial, m(α) = 0. By assumption, p(α) = 0, so p(α) =
f(α)m(α) + r(α) implies that 0 = 0 + r(α) or r(α) = 0. Since m(x) is the minimal
polynomial of α and the degree of r(x) is less than the degree of m(x), we must have that
r does not have positive degree. This means r(x) is constant, and since r(α) = 0, it must
be the zero polynomial1.

Therefore, p(x) = f(x)m(x), which is a factorization of p(x) into a product of two poly-
nomials. Since p(x) is irreducible and m(x) has positive degree, we must have that f(x)
is constant. Therefore, there is a constant a such that p(x) = am(x). Since p(x) is
irreducible, it has degree at least 1, so a ̸= 0.

By an essentially identical argument, there is a constant b ̸= 0 such that q(x) = bm(x).

Taking c =
a

b
, we have

cq(x) = cbm(x) =
a

b
bm(x) = am(x) = p(x)

Computing the degrees of the algebraic numbers from part (e). We can use
parts (f) and (j) to prove the following: If an algebraic number is a root of an irreducible
polynomial of degree d, then the degree of the algebraic number is d.

To see why this is true, suppose α is algebraic of degree d and is a root of an irreducible
polynomial p(x) of degree n. By part (f), the minimal polynomial, m(x), of α has degree
d. This means p(x) and m(x) are irreducible polynomials with a root, α, in common. By
part (j), one is a scalar multiple of the other (and that scalar is nonzero), so they have the
same degree. In other words, n = d.

It follows that if we are given an algebraic number α and produce an irreducible polynomial
of degree d to which α is a root, we will have shown that the degree of α is d. In part (e),
one can show that each of the four polynomials produced (for each algebraic number) is
irreducible, so the degrees of the algebraic numbers are as stated at the end of the solution
to (e).

(k) Suppose p(x) is an irreducible rational polynomial with a repeated root, α. By part (h)(ii),
α is also a root of p1(x). Note that if anx

n is the leading term of p(x), then nanx
n−1 is the

leading term of p1(x), and so p1(x) has degree strictly lower than that of p(x). As well,
p(x) has a repeated root, so n ≥ 2, which means n− 1 ≥ 1. Therefore, p1(x) has positive
degree less than n.

Every polynomial can be factored into a product of irreducible factors. To see why, we
can emulate the reasoning used to see that every positive integer is the product of prime
numbers. For example, if p1(x) is irreducible, then we stop. Otherwise, it can be factored
as p1(x) = f(x)g(x) where each of f(x) and g(x) has degree at least 1 and less than that of
p1(x). Now either f(x) and g(x) are irreducible, or they can be factored into polynomials
of lower degree. Critically, the degrees always go down but stay larger than 1 when we

1For technical reasons, mathematicians usually distinguish the zero polynomial among the constant polyno-
mials and do not consider it to have degree 0. Typically it is either not assigned a degree or assigned a “degree”
of −∞. For the purposes of this document, there is no harm in just taking the zero polynomial to have degree 0.

7



factor. Consequentially, this cannot go on forever, and we will eventually be left with p1(x)
expressed as a product of irreducible polynomials.

Since p1(α) = 0, one of these irreducible factors, say h(x), has α as a root. Since h(x) is
a factor of p1(x), its degree is no larger than the degree of p1(x), which means h(x) has
degree less than n.

We now have that α is a root of both h(x) and p(x). Both polynomials are irreducible, so
part (j) implies that they must have the same degree. We have just argued that the degree
of h(x) is less than the degree of p(x), so this is a problem.

This means our assumption that p(x) has a repeated root must have been wrong, so we
conclude that an irreducible rational polynomial cannot have a repeated root.
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