Problem of the Month

Problem 6: March 2024

Hint

(a) The Rational Root Theorem could come in handy: If a polynomial $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+$ $\cdots+a_{1} x+a_{0}$ has integer coefficients and r is a rational root of $p(x)$, then it must be of the form $r=\frac{u}{v}$ where u and v are integers, u is a divisor of a_{0}, and v is a divisor of a_{n}.
For the polynomial in (a), this means the only possible rational roots are $\pm 1, \pm 2, \pm 4$, and ± 8, the divisors of 8 (the leading coefficient is 1).
(b) This polynomial is a perfect square.
(c) This polynomial has no rational roots, but it does have a real root that is easy to find.
(d) A polynomial has a rational root if and only if it has a rational linear factor. If $p(x)$ and $q(x)$ are polynomials of degree m and n, then what is the degree of $p(x) q(x)$?
(e) To show that a number is algebraic, you need to find a rational polynomial with that number as a root. For $1+\sqrt[3]{2}$, let $r=1+\sqrt[3]{2}$ so that $r-1=\sqrt[3]{2}$. Now cube both sides.
(f) If $p(x)$ has degree d and factors as the product of two polynomials of degree at least 1 , then both of these polynomials have degree less than d. Read the definition of "degree" carefully.

For uniqueness, suppose that two polynomials, $p(x)$ and $q(x)$, have the described properties. What can be said about the degree of their difference?
(h) (i) Warm up by trying this with a polynomial of lower degree. It turns out that the polynomial $f_{1}(x)$ is the derivative of $f(x)$. This is not important for the problem, but it is interesting.
(ii) If you know some calculus, then there is a nice proof of this involving the product rule. Otherwise, if $f(x)=(x-r)^{2} p(x)$, then $f(x+y)=[(x-r)+y]^{2} p(x+y)$. Expand $p(x+y)$ and $f(x+y)$ as described in part (i) and compare "coefficients" of y.
(j) By definition, the shared root is algebraic and so has a minimal polynomial, $m(x)$. Show that each of $p(x)$ and $q(x)$ is a scalar multiple of $m(x)$.

Division Algorithm for Polynomials: For polynomials $f(x)$ and $g(x)$ with $g(x)$ not the zero polynomial, there exist unique polynomials $h(x)$ and $r(x)$ such that

$$
f(x)=h(x) g(x)+r(x)
$$

where the degree of $r(x)$ is less than the degree of $g(x)$. This is essentially the result of doing polynomial or synthetic division of $f(x)$ by $g(x)$.
(k) Convince yourself that every polynomial can be expressed as a product of irreducible polynomials. As well, as long as $f(x)$ has degree at least 1 , the polynomial $f_{1}(x)$ is not the zero polynomial and has degree less than that of $f(x)$ (in fact, the degree is one less).

