
Problem of the Month
Solution to Problem 5: February 2024

(a) The binomial coefficient
(
n+1
2

)
is equal to (n+1)!

2!(n−1)!
, and since (n+1)!

(n−1)!
= (n+ 1)n, we get that(

n+1
2

)
= n(n+1)

2
. By the well-known formula for the sum of the first n positive integers, we

have 1 + 2 + 3 + · · ·+ (n− 1) + n = n(n+1)
2

, and so the answer to (i) is
(
n+1
2

)
.

For (ii), we will consider the possible values of x. Note that since x and y are non-negative
and x+ y ≤ n− 1, we must have that 0 ≤ x ≤ n− 1.

If x = 0 and x+ y ≤ n− 1, then y can be any of the integers from 0 through n− 1, for a
total of n possibilities.

If x = 1, then y can be any of the integers from 0 through n − 1 − 1 = n − 2, for a total
of n− 1 possibilities.

In general, if x = k for some k with 0 ≤ k ≤ n − 1, then y can be any integer from 0
through n− 1− k. There are a total of n− k integers from 0 through n− 1− k.

Therefore, the number of pairs is n + (n − 1) + (n − 2) + · · · + [n − (n − 1)], but this is
just the sum 1+2+3+ · · ·+n written in reverse order. By part (i), we conclude that the
number of non-negative integer pairs (x, y) with x+ y ≤ n− 1 is

(
n+1
2

)
.

For (iii), observe that if x and y are non-negative integers with x+ y ≤ n− 1, then there
is exactly one non-negative integer z for which x+ y + z = n− 1. Therefore, the number
of non-negative integer pairs (x, y) with x+ y ≤ n− 1 is exactly the same as the number
of non-negative integer triples (x, y, z) with x+ y + z = n− 1.

(b) Suppose the r distinguishable cups are labelled Cup 1, Cup 2, and so on, up to Cup r.
Suppose the n balls are placed in the r cups. If we let xk be equal to the number of balls in
Cup k (noting that it is possible that xk = 0), then we will have x1+x2+ · · ·+xr = n since
there are n balls in total. On the other hand, if we have a non-negative integer solution
(x1, x2, . . . , xr) to x1 + x2 + · · · + xr = n, then if we place xk balls in Cup k for each k,
then we will have distributed exactly n balls among the r cups. Finally, observe that every
placement of n balls in the r cups leads to a distinct solution to x1 + x2 + · · · + xr = n,
and every solution to this equation gives a distinct way to distribute n balls in the r cups.
This shows that the answers to questions (i) and (ii) are equal.

We will now show that the answer to question (ii) (and hence, the answer to question (i)),
is
(
n+r−1
r−1

)
.

We need to reimagine the distribution of balls into cups as a choice of some objects. To
give an idea of how it works, we will focus on the special case with n = 10 and r = 4.
That is, we want to count the number of ways to place 10 indistinguishable balls in 4
distinguishable cups.

Imagine laying the 10 balls in a row. We want to place them among 4 cups, which means
we want to break the 10 balls into 4 groups (where some of the groups could be empty).
We can do this by placing three partitions somewhere among the 10 balls that are now
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lined up in a row. For example, the partitions could be placed as shown in the diagram
below. Each ball is represented by a circle and each partition is represented by a vertical
line.

This corresponds to placing 2 balls in Cup 1, 3 balls in Cup 2, 1 ball in Cup 3, and 4 balls
in Cup 4. For a different example, we could place the partitions as follows.

In this case, two of the partitions are next to each other with no balls between them. This
corresponds to the third cup having no balls in it.

In fact, any arrangement of 10 indistinguishable balls and 3 indistinguishable partitions
will corresponds to an ordered list of four non-negative integers that have a sum of 10.

Therefore, there are 10 + 3 = 13 positions where the balls and partitions are to be placed,
and every way to choose three of the positions to be partitions corresponds to an ordering
of 10 balls and 3 partitions. Therefore, the answer to the question in this case is

(
13
3

)
.

In general, if there are r cups, then we need to use r− 1 partitions. This means there will
be n balls and r−1 partitions for a total of n+r−1 objects. There are r−1 positions that
need to be chosen for the partitions. Thus, the number of ways to place n indistinguishable
balls in r distinguishable cups is

(
n+r−1
r−1

)
.

(c) First note that non-negative integers x1, x2, . . . , xr satisfy x1 + x2 + · · · + xr ≤ n if and
only if x1 + x2 + · · · + xr = m for some integer m with 0 ≤ m ≤ n. From part (b), the
number of non-negative integer solutions to x1 + x2 + · · ·+ xr = m is

(
r−1+m
r−1

)
. Therefore,

the number of non-negative integer solutions to x1 + x2 + · · ·+ xr ≤ n is(
r − 1 + 0

r − 1

)
+

(
r − 1 + 1

r − 1

)
+

(
r − 1 + 2

r − 1

)
+ · · ·+

(
r − 1 + n

r − 1

)
=

(
r − 1

r − 1

)
+

(
r

r − 1

)
+

(
r + 1

r − 1

)
+ · · ·+

(
r + n− 1

r − 1

)

Now suppose x0, x1, . . . , xr are non-negative integers with x0 + x1 + · · · + xr = n. Then
we must have x1 + x2 + · · · + xr ≤ n. On the other hand, if x1 + x2 + · · · + xr ≤ n, then
there is a unique non-negative integer x0 that satisfies x0 + x1 + · · ·+ xr = n. This shows
that the number of non-negative integer solutions to x0 + x1 + · · ·+ xr = n is the same as
the number of non-negative integer solutions to x1 + x2 + · · ·+ xr ≤ n. From part (b), the
number of solutions to x0 + x1 + · · ·+ xr = n is

(
n+(r+1)−1
(r+1)−1

)
=

(
n+r
r

)
.

We have shown that the number of non-negative integer solutions to the inequality
x1 + x2 + · · ·+ xr ≤ n is equal to(

r − 1

r − 1

)
+

(
r

r − 1

)
+

(
r + 1

r − 1

)
+ · · ·+

(
r + n− 1

r − 1

)
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and it is also equal to
(
n+r
r

)
, so we conclude that(

r − 1

r − 1

)
+

(
r

r − 1

)
+

(
r + 1

r − 1

)
+ · · ·+

(
r + n− 1

r − 1

)
=

(
n+ r

r

)
This identity is sometime called the Hockey Stick Identity. If you are interested in knowing
why it has such a strange name, read about Pascal’s Triangle and try to interpret this result
using Pascal’s Triangle.

(d) The integer k having the property that k < 1010 is the same as the integer k having at
most 10 decimal digits. Thus, every such integer takes the form k = a9a8a7 · · · a1a0 where
a9, a8, a7, . . . , a1, a0 are the digits of k, but some of the leading digits may be equal to 0.
For example, to represent the integer 19723 in this way, we would write it as 0000019723
so a9 = a8 = a7 = a6 = a5 = 0, a4 = 1, a3 = 9, a2 = 7, a1 = 2, and a0 = 3.

Thus, to count the non-negative integers with a digit sum of 21, we need to find all non-
negative integer solutions to the equation a9 + a8 + a7 + · · · + a1 + a0 = 21, but we have
an additional restriction that each ai is a digit, meaning 0 ≤ ai ≤ 9.

Switching notation slightly to match earlier parts, the answer to the question is equal to
the number of solutions to the equation x1+x2+ · · ·+x10 = 21 where each xi is an integer
with 0 ≤ xi ≤ 9.

By part (b), the number of non-negative integer solutions to x1 + x2 + · · · + x10 = 21
without the restriction that xi ≤ 9 is

(
21+10−1
10−1

)
=

(
30
9

)
. The total of

(
30
9

)
includes some

solutions that violate xi ≤ 9 for some i. We will now count the solutions that have xi ≥ 10
for at least one i so we can remove these from the count.

First, we claim that for each index i, there are
(
20
9

)
solutions that have xi ≥ 10. For

example, consider a non-negative integer solution to x1+x2+ · · ·+x10 = 21 with x1 ≥ 10.
If we set y1 = x1 − 10 then y1 is a non-negative integer and

y1 + x2 + · · ·+ x10 = (x1 − 10) + x2 + · · ·+ x10 = (x1 + x2 + · · ·+ x10)− 10 = 21− 10 = 11

Also, if we consider a non-negative integer solution to y1 + x2 + · · · + x10 = 11, and set
x1 = y1+10, then we obtain a non-negative integer solution to x1+x2+ · · ·+x10 = 21 with
x1 ≥ 10. By part (b), there are

(
20
9

)
non-negative integer solutions to y1+x2+· · ·+x10 = 11

and so, equivalently, there are
(
20
9

)
non-negative integer solutions to x1+x2+ · · ·+x10 = 21

with x1 ≥ 10.

Similarly, for each i from 1 through 10, there are exactly
(
20
9

)
non-negative integer solutions

to x1 + x2 + · · · + x10 = 21 with xi ≥ 10. Note that these different sets of solutions have
overlap and so the number of solutions with xi ≥ 10 for at least one i is not 10

(
20
9

)
. This

is an overcount. For example, the solution x1 = 10, x2 = 10, x3 = 1, and x4 = x5 = x6 =
x7 = x8 = x9 = x10 = 0 is double counted: once as a solution with x1 ≥ 10 and once as a
solution with x2 ≥ 10.

Next, we claim that for every pair of indices i and j, with i ̸= j, there are
(
10
9

)
non-negative

integer solutions to x1 + x2 + · · · + x10 = 21 with xi ≥ 10 and xj ≥ 10. Each of these
solutions will be double counted in the count 10

(
20
9

)
. Note that there are no solutions to

x1 + x2 + · · · + x10 = 21 that have more than two variables exceeding 9 and so this will
give us the complete picture.
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For an example, consider a non-negative integer solution to x1 + x2 + x3 + · · ·+ x10 = 21
with x1 ≥ 10 and x2 ≥ 10. If we set y1 = x1 − 10 and y2 = x2 − 10 then y1 and y2 are
non-negative integers satisfying y1 + y2 + x3 + · · · + x10 = 1. Similarly, a non-negative
integer solution to y1 + y2 + x3 + · · · + x10 = 1 corresponds to a non-negative integer
solution to x1 + x2 + x3 + · · · + x10 = 21 with x1, x2 ≥ 10. By part (b), there are

(
10
9

)
non-negative integer solutions to y1+ y2+x3+ · · ·+x10 = 1 and so, equivalently, there are(
10
9

)
non-negative integer solutions to x1 + x2 + · · ·+ x10 = 21 with x1 ≥ 10 and x2 ≥ 10.

Similarly, for each pair i and j, with i ̸= j, there are
(
10
9

)
solutions to x1+x2+· · ·+x10 = 21

with xi ≥ 10 and xj ≥ 10.

Since there are
(
10
2

)
ways to choose two indices, there are

(
10
2

)(
10
9

)
= 45

(
10
9

)
non-negative

integer solutions that have two variables exceeding 9. From this, we conclude that the
number of non-negative integer solutions to x1 + x2 + · · ·+ x10 = 21 that have xi ≥ 10 for
at least one i is given by 10

(
20
9

)
− 45

(
10
9

)
.

Therefore, the total number of non-negative integer solutions to x1 + x2 + · · · + x10 = 21
with xi ≤ 9 for all i can be calculated as follows:(

30
9

)
− 10

(
20
9

)
+ 45

(
10
9

)
= 14 307 150− 10(167 960) + 45(10)

= 14 307 150− 1 679 600 + 450

= 12 628 000

(e) By the same convention as the previous problem, we can recognize every positive integer
less than 108 as an 8-digit integer by possibly prepending some 0s. Thus, we wish to count
the number of solutions to the equation x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8 = 0 where
the xi are integers with 0 ≤ xi ≤ 9 for each i.

We can rearrange this equation to get x1 + x3 + x5 + x7 = x2 + x4 + x6 + x8, so we want
to count non-negative integer solutions to this equation where xi ≤ 9 for each i.

Since 0 ≤ xi ≤ 9, we must have that 0 ≤ x1+x3+x5+x7 ≤ 36 and 0 ≤ x2+x4+x6+x8 ≤ 36.
For each n from 0 through 36, let An denote the number of non-negative integer solutions
to x1 + x3 + x5 + x7 = n with xi ≤ 9 for i = 1, i = 3, i = 5, and i = 7. Since all of
the 8 variables have the exact same restrictions, we also have that An is the number of
non-negative integer solutions to x2 + x4 + x6 + x8 = n where each variable is no larger
than 9. Thus, for each n from 0 through 36, there are A2

n solutions to the equation with
each side equal to n. Therefore, the answer to the question is

A2
0 + A2

1 + A2
2 + · · ·+ A2

36

Now suppose that 0 ≤ n ≤ 36 and x1 + x3 + x5 + x7 = n with 0 ≤ xi ≤ 9 for each i. Then
(9− x1) + (9− x3) + (9− x5) + (9− x7) = 36− n, and observe that since 0 ≤ xi ≤ 9, we
have 0 ≤ 9− xi ≤ 9, and since 0 ≤ n ≤ 36, we have 0 ≤ 36−n ≤ 36. You should convince
yourself that this shows that the number of solutions to x1 + x3 + x5 + x7 = n is the same
as the number of solutions to x1 + x3 + x5 + x7 = 36 − n. In other words, An = A36−n.
When n = 18, we also have 36− n = 18, so the total we seek is equal to

2(A2
0 + A2

1 + A2
2 + · · ·+ A2

17) + A2
18

For n = 0 through n = 9, if x1 + x3 + x5 + x7 = n, then xi ≤ 9 for each i since the total
is at most 9. This means the number of solutions to x1 + x3 + x5 + x7 = n where xi ≤ 9
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for each i is equal to the number of non-negative integer solutions without restriction. By
part (b), if 0 ≤ n ≤ 9, then An =

(
n+3
3

)
.

For n = 10 through n = 18, there are still
(
n+3
3

)
unrestricted solutions, but here the count

includes solutions with xi ≥ 10 for some i. Note that since the total is at most 18, it is
not possible for more than one variable to exceed 9. Similar to the argument in part (d),
for each i, there are

(
n+3−10

3

)
solutions with xi ≥ 10. Since there are 4 variables, there are

4
(
n+3−10

3

)
solutions with a variable exceeding 9. Therefore, An =

(
n+3
3

)
− 4

(
n+3−10

3

)
.

We now just need to compute the total.

2(A2
0 + · · ·+ A2

9) + 2(A2
10 + · · ·+ A2

17) + A2
18

= 2
((

3
3

)2
+ · · ·+

(
12
3

)2)
+ 2

(((
13
3

)
− 4

(
3
3

))2
+ · · ·+

((
20
3

)
− 4

(
10
3

))2)
+
((

21
3

)
− 4

(
11
3

))2
= 2(12 + 42 + 102 + 202 + 352 + 562 + 842 + 1202 + 1652 + 2202)

+ 2(79524 + 121104 + 172225 + 230400 + 291600 + 350464 + 400689 + 435600)

+ 448900

= 4816030

(f) Let x = a − 1, y = b − 1, and z = c − 1. Then we have 0 ≤ x < y < z ≤ 2023 and
x + y + z = 2024. Thus, we want to count the number of non-negative integer solutions
to x + y + z = 2024 where x < y < z ≤ 2023. Suppose T is the number of non-negative
integer solutions to x+ y + z = 2024 where x, y, and z are all distinct and no larger than
2023. Since there are six different arrangements of three distinct integers, exactly one of
which puts them in increasing order, the answer to the given question is 1

6
T .

To compute T , we note that by part (b) there are
(
2026
2

)
non-negative integer solutions to

x + y + z = 2024 where there are no restrictions on the non-negative integers x, y, and
z. We now need to remove those solutions where at least two of the variables are equal as
well as any that have at least one of x, y, and z greater than 2023.

If one of x, y, and z is greater than 2023, then the condition x+ y+ z = 2024 and the fact
that x, y, and z are non-negative integers implies that one of the variables equals 2024 and
the other two equal 0. Thus, any solutions with a variable greater than 2023 will also have
two variables equal to each other, so we can just count the number of solutions with at
least two variables equal and subtract this total from

(
2026
2

)
. Since 2024 is not a multiple

of 3, it is impossible that x = y = z. Therefore, we need to count the number of solutions
where exactly two variables are equal.

To count the number of solutions to x + y + z = 2024 with two variables equal, we will
count the number of solutions with x = y and triple the result since there are three choices
of which two variables are equal.

We now want to count non-negative integer solutions to 2x + z = 2024. This equation
implies that z is even, or that z = 2w for some non-negative integer w. Thus, we need to
count the number of solutions to 2x + 2w = 2024 or x + w = 1012. By part (b), this is
1013, so the number of solutions to the equation with two variables equal to eachother is
3× 1013 = 3039.

We now have that T =
(
2026
2

)
− 3039, and so the number of solutions is

1
6

((
2026
2

)
− 3039

)
= 1

6
(1013× 2025− 3039) = 1013(337) = 341381
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