Problem of the Month

Problem 5: February 2024

Hint

First, some hints on the exercises.
(i) List the two-element subsets of $\{1,2,3,4,5\}$.
(ii) The answers are 1 and n. It might take a moment of reflection to convince yourself that $\binom{n}{0}=1$ makes sense.
(iii) If k objects are chosen from a set of n objects, then how many objects are not chosen?
(iv) If you are to choose $k+1$ integers from the set $\{1,2,3, \ldots, n, n+1\}$, then either $n+1$ is chosen or it is not.
(v) The quantity $(1+x)^{n}$ is equal to the product of n copies of $(1+x)$. Try expanding $(1+x)^{n}$ for a few small values of n without collecting like terms. As an example, think about how an x^{3} term could arise during the expansion of $(1+x)(1+x)(1+x)(1+x)(1+x)$.

Below are the hints for the main problems.
(a) If you have never seen a proof of (a)(i), try writing the sum $1+2+3+\cdots+n$ in reverse order directly under the sum $1+2+3+\cdots+n$. Now add each column. For (a)(ii), consider the possible values of x. For (a)(iii), consider the equation $x+y+z=n-1$ for a fixed pair (x, y).
(b) Imagine arranging the n identical balls in a row and placing $r-1$ sticks between them. By doing this, you have partitioned the n balls into r smaller groups.
(c) Introduce a new variable, x_{0}, and consider the equation $x_{0}+x_{1}+\cdots+x_{r}=n$.
(d) The non-negative integers x with $x<10^{10}$ are exactly the integers that have at most 10 digits. Consider the equation $x_{1}+x_{2}+\cdots+x_{10}=21$ where $0 \leq x_{i} \leq 9$.

There was an omission in part (d). The original question said "integers" where it should have said "non-negative integers".
(e) This question can be analyzed by examining the equation $x_{1}-x_{2}+x_{3}-x_{4}+x_{5}-x_{6}+x_{7}-x_{8}=0$. Rearrange this equation and use the ideas from (b) and (d).
(f) Let $x=a-1, y=b-1$, and $z=c-1$. Find the number of non-negative integer solutions to $x+y+z=2024$ with x, y, and z distinct.

