Problem of the Month

Problem 4: January 2024

Hint

(a) Any list that compresses $[1: 9]$ must contain 1 . Think about the largest possible number of integers in $f(A)$ when A is a list of length k.
(b) First, try to find a list that compresses $[1: 63]$ that is as short as possible. It might help to read about the binary representation of positive integers.
(c) Work out a few more examples like the one in (b). It is possible to compress $[1: n]$ using a list A that consists entirely or almost entirely of powers of 2 .
(d) For $k \geq 3$ and $m \geq 2$, if A compresses [$m: m+k-1$], then A must contain m and $m+1$.
(e) The answer is 39. Do not worry about trying to compress [5:k] using as short a list as possible. As well, inductive thinking could be useful here. Suppose you can show that there is some k with the property that $[5: k],[5: k+1],[5: k+2],[5: k+3]$, and $[5: k+4]$ are all compressible. Can you deduce that $[5: n]$ is compressible for all $n \geq k$?

