Problem of the Month

Problem 3: December 2023

This month's problem is an extension of Problem 3 from Part B of the 2023 Canadian Intermediate Mathematics Contest. The original problem was stated as follows:

The positive integers are written into rows so that Row n includes every integer m with the following properties:
(i) m is a multiple of n,
(ii) $m \leq n^{2}$, and
(iii) m is not in an earlier row.

The table below shows the first six rows.

Row 1	1
Row 2	2,4
Row 3	$3,6,9$
Row 4	$8,12,16$
Row 5	$5,10,15,20,25$
Row 6	$18,24,30,36$

(a) Determine the smallest integer in Row 10.
(b) Show that, for all positive integers $n \geq 3$, Row n includes each of $n^{2}-n$ and $n^{2}-2 n$.
(c) Determine the largest positive integer n with the property that Row n does not include $n^{2}-10 n$.

If you have not already done so, we suggest thinking about the parts above before proceeding.
(a) For each positive integer k, determine the largest positive integer n with the property that Row n does not include $n^{2}-k n$. (This generalizes part (c) from the original problem.)

In the remaining questions, $f(n)$ is defined for each $n \geq 1$ to be the largest non-negative integer m such that $m \leq n$ and $m n$ is not in Row n. For example, Row 6 is $18,24,30,36$, so $f(6)=2$ since $2 \times 6=12$ is not in Row 6 but $3 \times 6,4 \times 6,5 \times 6$, and 6×6 are all in Row 6 .
(b) Show that $f(p)=0$ for all prime numbers p. (Looking closely at the definition of $f(n)$, $f(p)=0$ means that every positive multiple of p from p through p^{2} appears in Row p.)
(c) Find an expression for $f(p q)$ where p and q are prime numbers. Justify that the expression is correct.
(d) Find an expression for $f\left(p^{d}\right)$ where p is a prime number and d is a positive integer.
(e) Take some time to explore the function f further on your own. Are there other results you can prove about the function beyond what is done in (b), (c) and (d)? Is there a nice way to compute $f(n)$ in general without computing each of the first $n-1$ rows?

