

Problem of the Month Problem 3: December 2023

This month's problem is an extension of Problem 3 from Part B of the 2023 Canadian Intermediate Mathematics Contest. The original problem was stated as follows:

The positive integers are written into rows so that Row n includes every integer m with the following properties:

- (i) m is a multiple of n,
- (ii) $m \le n^2$, and
- (iii) m is not in an earlier row.

The table below shows the first six rows.

Row 1	1
Row 2	2, 4
Row 3	3, 6, 9
Row 4	8, 12, 16
Row 5	5, 10, 15, 20, 25
Row 6	18, 24, 30, 36

- (a) Determine the smallest integer in Row 10.
- (b) Show that, for all positive integers $n \ge 3$, Row n includes each of $n^2 n$ and $n^2 2n$.
- (c) Determine the largest positive integer n with the property that Row n does not include $n^2 10n$.

If you have not already done so, we suggest thinking about the parts above before proceeding.

(a) For each positive integer k, determine the largest positive integer n with the property that Row n does not include $n^2 - kn$. (This generalizes part (c) from the original problem.)

In the remaining questions, f(n) is defined for each $n \ge 1$ to be the largest non-negative integer m such that $m \le n$ and mn is not in Row n. For example, Row 6 is 18, 24, 30, 36, so f(6) = 2 since $2 \times 6 = 12$ is not in Row 6 but 3×6 , 4×6 , 5×6 , and 6×6 are all in Row 6.

- (b) Show that f(p) = 0 for all prime numbers p. (Looking closely at the definition of f(n), f(p) = 0 means that every positive multiple of p from p through p^2 appears in Row p.)
- (c) Find an expression for f(pq) where p and q are prime numbers. Justify that the expression is correct.
- (d) Find an expression for $f(p^d)$ where p is a prime number and d is a positive integer.
- (e) Take some time to explore the function f further on your own. Are there other results you can prove about the function beyond what is done in (b), (c) and (d)? Is there a nice way to compute f(n) in general without computing each of the first n 1 rows?