Problem of the Month

Problem 2: November 2023

This month's problem is based on the following general question: If you draw a "loop" in the Cartesian plane, is it always possible to find four points on that loop that are the vertices of a square? For example, the diagram below has a loop (the solid line) and a square drawn (the dashed line) with its four vertices on the loop.

Although it is a bit informal, it should be sufficient to think of a "loop" as a curve that you could draw by starting your pencil somewhere on a page and moving the pencil around the page eventually ending up where it started. Such a loop could be "smooth" (like a circle), "jagged" (like a polygon), or some combination of the two.
(a) In each of parts (i) through (v), find four points on the loop that are the vertices of a square.
(i) the circle with equation $x^{2}+y^{2}=1$
(ii) the ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where a and b are fixed positive real numbers
(iii) the polygon with vertices $(1,0),\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right),(-1,0),\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$, and $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
(iv) the boundary of the region enclosed by the parabola with equation $y=-\frac{1}{2} x^{2}+\frac{1}{6} x+\frac{16}{9}$ and the line with equation $y=x$
(v) the boundary of the region enclosed by the parabolas with equations $y=x^{2}+\frac{2}{3} x-\frac{4}{3}$ and $y=-x^{2}+\frac{2}{3} x+\frac{4}{3}$
(b) Show that for every acute triangle there are exactly three squares whose vertices all lie on the perimeter of the triangle.

