Problem of the Month
 Problem 1: October 2023

Given a positive integer n, the digit sum of n is the sum of the base 10 digits of n. We will denote the digit sum of n by $D(n)$. For example, $D(1409)=1+4+0+9=14$.

Suppose that m is a positive integer. We will call a list of consecutive positive integers

$$
a, a+1, a+2, \ldots, a+k
$$

an m-list if none of $D(a), D(a+1), d(a+2)$, and so on up to $D(a+k)$ is a multiple of m. For example, the list $997,998,999,1000,1001,1002$ is a 4 -list because the digit sums of the integers in the list are $25,26,27,1,2$, and 3 , respectively, none of which is a multiple of 4 .

This problem explores the maximum length of an m-list for a few values of m.
(a) Show that the maximum length of a 2 -list is 2 . To do this, you must show that there is a 2-list of length 2 and you must also show that no list of three or more consecutive positive integers can be a 2 -list.
(b) Show that the maximum length of a 7 -list is 12 .
(c) Determine the maximum length of a 9-list.
(d) Determine the maximum length of an 11-list.

