Problem of the Month Solution to Problem 0: September 2023

(a) (i)

$$
\begin{aligned}
r_{2}=f\left(r_{1}\right) & =\frac{2 r_{1}-1}{r_{1}+2} \\
& =\frac{2\left(\frac{3}{2}\right)-1}{\frac{3}{2}+2} \\
& =\frac{4}{7} \\
r_{3}=f\left(r_{2}\right) & =\frac{2\left(\frac{4}{7}\right)-1}{\frac{4}{7}+2} \\
& =\frac{1}{18} \\
r_{4}=f\left(r_{3}\right) & =\frac{2\left(\frac{1}{18}\right)-1}{\frac{1}{18}+2} \\
& =-\frac{16}{37}
\end{aligned}
$$

(ii) Observe that $f(r)$ is only undefined when $r=-2$, so to choose r_{1} so that $r_{3}=f\left(r_{2}\right)$ is undefined, we need $r_{2}=-2$. Therefore, $r_{2}=f\left(r_{1}\right)=-2$, which gives rise to the equation $\frac{2 r_{1}-1}{r_{1}+2}=-2$. Multiplying both sides by $r_{1}+2$ gives $2 r_{1}-1=-2\left(r_{1}+2\right)$, which can be rearranged to get $4 r_{1}=-3$, so $r_{1}=-\frac{3}{4}$. Indeed, if $r_{1}=-\frac{3}{4}$, then $r_{2}=-2$ and r_{3} is undefined.
(b) (i)

$$
\begin{aligned}
r_{2}=f\left(r_{1}\right) & =\frac{\frac{3}{7}+3}{2\left(\frac{3}{7}\right)-1} \\
& =-24 \\
r_{3}=f\left(r_{2}\right) & =\frac{-24+3}{2(-24)-1} \\
& =\frac{-21}{-49} \\
& =\frac{3}{7} \\
& =r_{1}
\end{aligned}
$$

We have that $r_{3}=r_{1}$, so this means $r_{4}=f\left(r_{3}\right)=f\left(r_{1}\right)=r_{2}$, and using these facts, $r_{5}=f\left(r_{4}\right)=f\left(r_{2}\right)=r_{3}=r_{1}$. This will continue to get that $r_{n}=\frac{3}{7}$ when n is odd and $r_{n}=-24$ when n is even.
(ii) First observe that $f(r)$ is undefined only when $2 r-1=0$, or $r=\frac{1}{2}$. Therefore, if $r_{1}=\frac{1}{2}$, then $r_{2}=f\left(r_{1}\right)$ is undefined.

Now suppose $f(r)=\frac{1}{2}$. Then $\frac{r+3}{2 r-1}=\frac{1}{2}$, which can be rearranged to get the equation $2 r+6=2 r-1$. This equation implies $6=-1$, which is nonsense, and so we conclude that there is no r such that $f(r)=\frac{1}{2}$.
The only way that the sequence can fail to be defined somewhere is if $r_{n}=\frac{1}{2}$ for some n. This happens if $r_{1}=\frac{1}{2}$, but since $\frac{1}{2}$ is never the output of f, it is not possible that $r_{n}=\frac{1}{2}$ unless $n=1$. Therefore, $r_{1}=\frac{1}{2}$ is the only starting value for which the sequence is undefined somewhere.

Assuming $r \neq \frac{1}{2}$, we will now compute a general expression for $f(f(r))$. Since $r \neq \frac{1}{2}$ and $f(r) \neq \frac{1}{2}$ regardless of r, there will be no issues with the expression being undefined.

$$
\begin{aligned}
f(f(r)) & =\frac{\frac{r+3}{2 r-1}+3}{2\left(\frac{r+3}{2 r-1}\right)-1} \\
& \left.=\frac{r+3+3(2 r-1)}{2(r+3)-(2 r-1)} \quad \text { (multiply through by } 2 r-1\right) \\
& =\frac{7 r}{7} \\
& =r
\end{aligned}
$$

and so we have that $f(f(r))=r$ for all $r \neq \frac{1}{2}$. We can use this equation to get $r_{3}=f\left(r_{2}\right)=f\left(f\left(r_{1}\right)\right)=r_{1}$. Next, we can compute $r_{5}=f\left(r_{4}\right)=f\left(f\left(r_{3}\right)\right)=r_{3}=r_{1}$. Continuing, we see that $r_{n}=r_{1}$ for all odd n. Similarly, $r_{4}=f\left(r_{3}\right)=f\left(f\left(r_{2}\right)\right)=r_{2}$, and we can continue with this reasoning to get that $r_{n}=f\left(r_{1}\right)=r_{2}=\frac{r_{1}+3}{2 r_{1}-1}$ for all even n.

To answer the given question, since 2023 is odd, $r_{2023}=r_{1}$ and since 2024 is even, $r_{2024}=\frac{r_{1}+3}{2 r_{1}-1}$.
(c) (i) The values along with their decimal approximations are in the table below.

r_{1}	1	1
r_{2}	$\frac{3}{2}$	1.5
r_{3}	$\frac{7}{5}$	1.4
r_{4}	$\frac{17}{12}$	1.416667
r_{5}	$\frac{41}{29}$	1.413793
r_{6}	$\frac{99}{70}$	1.414286
r_{7}	$\frac{239}{169}$	1.414201
r_{8}	$\frac{577}{408}$	1.414216
r_{9}	$\frac{1933}{985}$	1.414213

(ii) We will work with the quantity $\frac{f(r)-\sqrt{2}}{r-\sqrt{2}}$ and worry about the absolute value later.

$$
\begin{aligned}
\frac{f(r)-\sqrt{2}}{r-\sqrt{2}} & =\frac{\frac{r+2}{r+1}-\sqrt{2}}{r-\sqrt{2}} \\
& =\frac{r+2-\sqrt{2}(r+1)}{(r+1)(r-\sqrt{2})} \\
& =\frac{r-\sqrt{2}+2-\sqrt{2} r}{(r+1)(r-\sqrt{2})} \\
& =\frac{r-\sqrt{2}-\sqrt{2}(r-\sqrt{2})}{(r+1)(r-\sqrt{2})} \\
& =\frac{(r-\sqrt{2})(1-\sqrt{2})}{(r+1)(r-\sqrt{2})} \\
& =\frac{1-\sqrt{2}}{r+1}
\end{aligned}
$$

(multiply through by $r+1$)
(cancel $r-\sqrt{2}$)
The result now follows by taking the absolute value of both sides.
(iii) Observe that if r is positive, then $f(r)=\frac{r+2}{r+1}$ is also positive since $r+2$ and $r+1$ are both positive. It follows that if r_{1} is positive, then r_{n} is positive for all n. Since $r_{n}>0$ for all $n, r_{n}+1>1$ for all n, and taking reciprocals, we get $\frac{1}{r_{n}+1}<1$ for all n. Since $r_{n}+1$ is positive, $\left|\frac{1}{r_{n}+1}\right|=\frac{1}{r_{n}+1}$, so we actually get that $\left|\frac{1}{r_{n}+1}\right|<1$ for all n.

We will now show that $|1-\sqrt{2}|<\frac{1}{2}$ (you may already believe this to be true, but the proof presented does not assume that we have a known approximation of $\sqrt{2}$). To see this, observe that $8<9$, and so $\sqrt{8}<\sqrt{9}$ which is the same as $2 \sqrt{2}<3$. Dividing both sides by 2 , we get $\sqrt{2}<\frac{3}{2}$. Subtracting $\frac{1}{2}+\sqrt{2}$ from both sides gives $-\frac{1}{2}<1-\sqrt{2}$. Now observe that $1<2$, so $\sqrt{1}<\sqrt{2}$ or $1<\sqrt{2}$. Therefore, $1-\sqrt{2}<0$. We have shown that $-\frac{1}{2}<1-\sqrt{2}<0$, which implies that $|1-\sqrt{2}|<\frac{1}{2}$. Combining this with $\left|\frac{1}{r_{n}+1}\right|<1$, we get

$$
\left|\frac{1-\sqrt{2}}{r_{n}+1}\right|=\left|\frac{1}{r_{n}+1}\right||1-\sqrt{2}|<1 \times \frac{1}{2}=\frac{1}{2}
$$

so $\left|\frac{1-\sqrt{2}}{r_{n}+1}\right|<\frac{1}{2}$.
Since $r_{n}=f\left(r_{n-1}\right)$ for all $n \geq 2$, we can apply part (ii) to get

$$
\left|\frac{r_{n}-\sqrt{2}}{r_{n-1}-\sqrt{2}}\right|=\left|\frac{f\left(r_{n-1}\right)-\sqrt{2}}{r_{n-1}-\sqrt{2}}\right|=\left|\frac{1-\sqrt{2}}{r_{n-1}+1}\right|<\frac{1}{2}
$$

where the final inequality comes from applying what we showed above.
This implies that for all $n \geq 2$ we have

$$
\begin{equation*}
\left|r_{n}-\sqrt{2}\right|<\frac{1}{2}\left|r_{n-1}-\sqrt{2}\right| \tag{*}
\end{equation*}
$$

Now let's return to the inequality in the question, which is $\left|r_{n}-\sqrt{2}\right|<\frac{1}{2^{n-1}}\left|r_{1}-\sqrt{2}\right|$. When $n=2$, this inequality is $\left|r_{2}-\sqrt{2}\right|<\frac{1}{2}\left|r_{1}-\sqrt{2}\right|$, which is exactly $(*)$ when $n=2$. We have already shown that $(*)$ is true for all n, so this means the desired inequality is true for $n=2$.

When $n=3$, we can apply $(*)$ to get $\left|r_{3}-\sqrt{2}\right|<\frac{1}{2}\left|r_{2}-\sqrt{2}\right|$, but we have just shown that $\left|r_{2}-\sqrt{2}\right|<\frac{1}{2}\left|r_{1}-\sqrt{2}\right|$. Therefore,

$$
\left|r_{3}-\sqrt{2}\right|<\frac{1}{2}\left|r_{2}-\sqrt{2}\right|<\frac{1}{2}\left(\frac{1}{2}\left|r_{1}-\sqrt{2}\right|\right)=\frac{1}{2^{2}}\left|r_{1}-\sqrt{2}\right|
$$

which shows that the desired inequality holds for $n=3$.
By similar reasoning, we can use the fact that the inequality holds for $n=3$ to prove that it holds for $n=4$, then we can use that it holds for $n=4$ to prove that it holds for $n=5$, and so on to show that the inequality holds for all positive integers $n \geq 2$. We can formalize this using mathematical induction.

Assume that $k \geq 2$ is an integer for which the inequality $\left|r_{k}-\sqrt{2}\right|<\frac{1}{2^{k-1}}\left|r_{1}-\sqrt{2}\right|$ is true. Using $(*)$ with $n=k+1$, we have the following

$$
\left|r_{k+1}-\sqrt{2}\right|<\frac{1}{2}\left|r_{k}-\sqrt{2}\right|
$$

and now using the inductive hypothesis, that $\left|r_{k}-\sqrt{2}\right|<\frac{1}{2^{k-1}}\left|r_{1}-\sqrt{2}\right|$, we get

$$
\left|r_{k+1}-\sqrt{2}\right|<\frac{1}{2}\left(\left|r_{k}-\sqrt{2}\right|\right)<\frac{1}{2}\left(\frac{1}{2^{k-1}}\left|r_{1}-\sqrt{2}\right|\right)=\frac{1}{2^{k}}\left|r_{1}-\sqrt{2}\right|
$$

but $k=(k+1)-1$, so we have shown that the inequality holds for the integer $k+1$. To summarize, we have shown that the inequality holds for $n=2$, and we have shown that if the inequality holds for an integer, then it holds for the next integer. This shows that the inequality holds for all integers $n \geq 2$.
Finally, since $\left|r_{1}-\sqrt{2}\right|$ is a fixed quantity, the quantity $\frac{1}{2^{n-1}}\left|r_{1}-\sqrt{2}\right|$ must get closer and closer to 0 as n gets larger and larger. We also have that $\left|r_{n}-\sqrt{2}\right|<\frac{1}{2^{n-1}}\left|r_{1}-\sqrt{2}\right|$ for all n, which means the quantity $\left|r_{n}-\sqrt{2}\right|$, which is positive, is also getting closer and closer to 0 as n gets larger and larger. It follows that $r_{n}-\sqrt{2}$ is very close to zero for very large n, which means r_{n} is very close to $\sqrt{2}$ for very large n. Keep in mind that this is true for any positive starting value r_{1}.
(d) Here is a brief summary of the behaviours of the sequences.

When $f(r)=\frac{r-3}{r-2}$, the sequence will repeat with period 3 as long as at least three terms in the sequence are defined. The only values of r_{1} for which the sequence has an undefined term are $r_{1}=2$ and $r_{1}=1$.

When $f(r)=\frac{r-1}{5 r+3}$, the sequence will repeat with period 4 as long as at least four terms are defined. The only values of r_{1} for which the sequence has an undefined term are $r_{1}=-\frac{3}{5}, r_{1}=-\frac{1}{5}$, and $r_{1}=\frac{1}{5}$.

When $f(r)=\frac{r-1}{r+2}$, the sequence will repeat with period 6 as long as at least six terms are defined. The only values of r_{1} for which the sequence has an undefined term are $r_{1}=-2$, $r_{1}=-1, r_{1}=-\frac{1}{2}, r_{1}=0$, and $r_{1}=1$.

When $f(r)=\frac{2 r+2}{3 r+3}$, the sequence is undefined after r_{1} if $r_{1}=-1$. Otherwise, the sequence has $r_{n}=\frac{2}{3}$ for all $n \geq 2$, regardless of the value of r_{1}.

Note: These examples, together with the one in part (b), show that the sequences can be periodic with period $1,2,3,4$, or 6 . Do you think that any other periods are possible?

When $f(r)=\frac{r+1}{r-2}$, the sequence converges to $\frac{3-\sqrt{13}}{2}$ unless the sequence has an undefined term. To get an idea of why, try solving the equation $\frac{r+1}{r-2}=r$ for r (this can be rearranged to a quadratic equation in r). There are infinitely many values of r_{1} for which r_{n} is undefined. The first few of them are

$$
2,5, \frac{11}{4}, \frac{26}{7}, \frac{59}{19}, \frac{137}{40}, \frac{314}{97}, \frac{725}{217}, \ldots
$$

Can you determine how these values are calculated? You might be interested in computing decimal approximations of these values and looking for a pattern.

As a final remark, we note that not all sequences are "well-behaved" (either periodic or approaching some value). For an example of a more chaotic sequence, try exploring the example in part (a) a little further. Can you see any pattern at all?

