
Problem of the Month
Solution to Problem 0: September 2023

(a) (i)

r2 = f(r1) =
2r1 − 1

r1 + 2

=
2
(
3
2

)
− 1

3
2

+ 2

=
4

7

r3 = f(r2) =
2
(
4
7

)
− 1

4
7

+ 2

=
1

18

r4 = f(r3) =
2
(

1
18

)
− 1

1
18

+ 2

= −16

37

(ii) Observe that f(r) is only undefined when r = −2, so to choose r1 so that r3 = f(r2)
is undefined, we need r2 = −2. Therefore, r2 = f(r1) = −2, which gives rise to the

equation
2r1 − 1

r1 + 2
= −2. Multiplying both sides by r1 + 2 gives 2r1 − 1 = −2(r1 + 2),

which can be rearranged to get 4r1 = −3, so r1 = −3
4
. Indeed, if r1 = −3

4
, then

r2 = −2 and r3 is undefined.

(b) (i)

r2 = f(r1) =
3
7

+ 3

2
(
3
7

)
− 1

= −24.

r3 = f(r2) =
−24 + 3

2(−24)− 1

=
−21

−49

=
3

7
= r1

We have that r3 = r1, so this means r4 = f(r3) = f(r1) = r2, and using these facts,
r5 = f(r4) = f(r2) = r3 = r1. This will continue to get that rn = 3

7
when n is odd

and rn = −24 when n is even.
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(ii) First observe that f(r) is undefined only when 2r − 1 = 0, or r = 1
2
. Therefore, if

r1 = 1
2
, then r2 = f(r1) is undefined.

Now suppose f(r) = 1
2
. Then

r + 3

2r − 1
= 1

2
, which can be rearranged to get the equation

2r+6 = 2r−1. This equation implies 6 = −1, which is nonsense, and so we conclude
that there is no r such that f(r) = 1

2
.

The only way that the sequence can fail to be defined somewhere is if rn = 1
2

for some
n. This happens if r1 = 1

2
, but since 1

2
is never the output of f , it is not possible

that rn = 1
2

unless n = 1. Therefore, r1 = 1
2

is the only starting value for which the
sequence is undefined somewhere.

Assuming r 6= 1
2
, we will now compute a general expression for f(f(r)). Since

r 6= 1
2

and f(r) 6= 1
2

regardless of r, there will be no issues with the expression
being undefined.

f(f(r)) =
r+3
2r−1

+ 3

2
(

r+3
2r−1

)
− 1

=
r + 3 + 3(2r − 1)

2(r + 3)− (2r − 1)
(multiply through by 2r − 1)

=
7r

7
= r

and so we have that f(f(r)) = r for all r 6= 1
2
. We can use this equation to get

r3 = f(r2) = f(f(r1)) = r1. Next, we can compute r5 = f(r4) = f(f(r3)) = r3 = r1.
Continuing, we see that rn = r1 for all odd n. Similarly, r4 = f(r3) = f(f(r2)) = r2,

and we can continue with this reasoning to get that rn = f(r1) = r2 =
r1 + 3

2r1 − 1
for all

even n.

To answer the given question, since 2023 is odd, r2023 = r1 and since 2024 is even,

r2024 =
r1 + 3

2r1 − 1
.

(c) (i) The values along with their decimal approximations are in the table below.

r1 1 1

r2
3
2

1.5

r3
7
5

1.4

r4
17
12

1.416667

r5
41
29

1.413793

r6
99
70

1.414286

r7
239
169

1.414201

r8
577
408

1.414216

r9
1393
985

1.414213
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(ii) We will work with the quantity
f(r)−

√
2

r −
√

2
and worry about the absolute value later.

f(r)−
√

2

r −
√

2
=

r+2
r+1
−
√

2

r −
√

2

=
r + 2−

√
2(r + 1)

(r + 1)(r −
√

2)
(multiply through by r + 1)

=
r −
√

2 + 2−
√

2r

(r + 1)(r −
√

2)

=
r −
√

2−
√

2(r −
√

2)

(r + 1)(r −
√

2)

=
(r −

√
2)(1−

√
2)

(r + 1)(r −
√

2)

=
1−
√

2

r + 1
(cancel r −

√
2)

The result now follows by taking the absolute value of both sides.

(iii) Observe that if r is positive, then f(r) =
r + 2

r + 1
is also positive since r + 2 and r + 1

are both positive. It follows that if r1 is positive, then rn is positive for all n. Since

rn > 0 for all n, rn + 1 > 1 for all n, and taking reciprocals, we get
1

rn + 1
< 1 for all

n. Since rn + 1 is positive,

∣∣∣∣ 1

rn + 1

∣∣∣∣ =
1

rn + 1
, so we actually get that

∣∣∣∣ 1

rn + 1

∣∣∣∣ < 1

for all n.

We will now show that |1 −
√

2| < 1
2

(you may already believe this to be true, but

the proof presented does not assume that we have a known approximation of
√

2).
To see this, observe that 8 < 9, and so

√
8 <

√
9 which is the same as 2

√
2 < 3.

Dividing both sides by 2, we get
√

2 < 3
2
. Subtracting 1

2
+
√

2 from both sides gives

−1
2
< 1−

√
2. Now observe that 1 < 2, so

√
1 <
√

2 or 1 <
√

2. Therefore, 1−
√

2 < 0.

We have shown that −1
2
< 1−

√
2 < 0, which implies that |1−

√
2| < 1

2
. Combining

this with

∣∣∣∣ 1

rn + 1

∣∣∣∣ < 1, we get

∣∣∣∣∣1−
√

2

rn + 1

∣∣∣∣∣ =

∣∣∣∣ 1

rn + 1

∣∣∣∣ |1−√2| < 1× 1

2
=

1

2

so

∣∣∣∣∣1−
√

2

rn + 1

∣∣∣∣∣ < 1
2
.

Since rn = f(rn−1) for all n ≥ 2, we can apply part (ii) to get∣∣∣∣∣ rn −
√

2

rn−1 −
√

2

∣∣∣∣∣ =

∣∣∣∣∣f(rn−1)−
√

2

rn−1 −
√

2

∣∣∣∣∣ =

∣∣∣∣∣ 1−
√

2

rn−1 + 1

∣∣∣∣∣ < 1

2
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where the final inequality comes from applying what we showed above.

This implies that for all n ≥ 2 we have

|rn −
√

2| < 1

2
|rn−1 −

√
2| (*)

Now let’s return to the inequality in the question, which is |rn−
√

2| < 1

2n−1
|r1−

√
2|.

When n = 2, this inequality is |r2 −
√

2| < 1
2
|r1 −

√
2|, which is exactly (∗) when

n = 2. We have already shown that (∗) is true for all n, so this means the desired
inequality is true for n = 2.

When n = 3, we can apply (∗) to get |r3−
√

2| < 1
2
|r2−

√
2|, but we have just shown

that |r2 −
√

2| < 1
2
|r1 −

√
2|. Therefore,

|r3 −
√

2| < 1

2
|r2 −

√
2| < 1

2

(
1

2
|r1 −

√
2|
)

=
1

22
|r1 −

√
2|

which shows that the desired inequality holds for n = 3.

By similar reasoning, we can use the fact that the inequality holds for n = 3 to prove
that it holds for n = 4, then we can use that it holds for n = 4 to prove that it holds
for n = 5, and so on to show that the inequality holds for all positive integers n ≥ 2.
We can formalize this using mathematical induction.

Assume that k ≥ 2 is an integer for which the inequality |rk −
√

2| < 1

2k−1
|r1 −

√
2|

is true. Using (∗) with n = k + 1, we have the following

|rk+1 −
√

2| < 1

2
|rk −

√
2|

and now using the inductive hypothesis, that |rk −
√

2| < 1
2k−1 |r1 −

√
2|, we get

|rk+1 −
√

2| < 1

2

(
|rk −

√
2|
)
<

1

2

(
1

2k−1
|r1 −

√
2|
)

=
1

2k
|r1 −

√
2|

but k = (k + 1)− 1, so we have shown that the inequality holds for the integer k + 1.

To summarize, we have shown that the inequality holds for n = 2, and we have shown
that if the inequality holds for an integer, then it holds for the next integer. This
shows that the inequality holds for all integers n ≥ 2.

Finally, since |r1−
√

2| is a fixed quantity, the quantity
1

2n−1
|r1−

√
2| must get closer

and closer to 0 as n gets larger and larger. We also have that |rn−
√

2| < 1

2n−1
|r1−
√

2|
for all n, which means the quantity |rn −

√
2|, which is positive, is also getting closer

and closer to 0 as n gets larger and larger. It follows that rn −
√

2 is very close to
zero for very large n, which means rn is very close to

√
2 for very large n. Keep in

mind that this is true for any positive starting value r1.
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(d) Here is a brief summary of the behaviours of the sequences.

When f(r) =
r − 3

r − 2
, the sequence will repeat with period 3 as long as at least three terms

in the sequence are defined. The only values of r1 for which the sequence has an undefined
term are r1 = 2 and r1 = 1.

When f(r) =
r − 1

5r + 3
, the sequence will repeat with period 4 as long as at least four terms

are defined. The only values of r1 for which the sequence has an undefined term are
r1 = −3

5
, r1 = −1

5
, and r1 = 1

5
.

When f(r) =
r − 1

r + 2
, the sequence will repeat with period 6 as long as at least six terms are

defined. The only values of r1 for which the sequence has an undefined term are r1 = −2,
r1 = −1, r1 = −1

2
, r1 = 0, and r1 = 1.

When f(r) =
2r + 2

3r + 3
, the sequence is undefined after r1 if r1 = −1. Otherwise, the

sequence has rn = 2
3

for all n ≥ 2, regardless of the value of r1.

Note: These examples, together with the one in part (b), show that the sequences can be
periodic with period 1, 2, 3, 4, or 6. Do you think that any other periods are possible?

When f(r) =
r + 1

r − 2
, the sequence converges to

3−
√

13

2
unless the sequence has an unde-

fined term. To get an idea of why, try solving the equation
r + 1

r − 2
= r for r (this can be

rearranged to a quadratic equation in r). There are infinitely many values of r1 for which
rn is undefined. The first few of them are

2, 5,
11

4
,
26

7
,
59

19
,
137

40
,
314

97
,
725

217
, . . .

Can you determine how these values are calculated? You might be interested in computing
decimal approximations of these values and looking for a pattern.

As a final remark, we note that not all sequences are “well-behaved” (either periodic or
approaching some value). For an example of a more chaotic sequence, try exploring the
example in part (a) a little further. Can you see any pattern at all?
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