Problem of the Month

Problem 0: September 2023

In this problem, f will always be a function defined by $f(r)=\frac{a r+b}{c r+d}$ where a, b, c, and d are integers. These integers will vary throughout the parts of the problem.

Given such a function f and a rational number r_{1}, we can generate a sequence $r_{1}, r_{2}, r_{3}, \ldots$ by taking $r_{n}=f\left(r_{n-1}\right)$ for each $n \geq 2$. That is, $r_{2}=f\left(r_{1}\right), r_{3}=f\left(r_{2}\right), r_{4}=f\left(r_{3}\right)$, and so on. Unless there is some point in the sequence where $f\left(r_{n-1}\right)$ is undefined, a sequence of this form can be made arbitrarily long.

These sequences behave in different ways depending on the function f and the starting value r_{1}. This problem explores some those behaviours.
(a) Suppose $f(r)=\frac{2 r-1}{r+2}$.
(i) With $r_{1}=\frac{3}{2}$, compute r_{2}, r_{3}, and r_{4}.
(ii) Find a rational number r_{1} with the property that r_{2} is defined, but r_{3} is not defined.
(b) Suppose $f(r)=\frac{r+3}{2 r-1}$.
(i) With $r_{1}=\frac{3}{7}$, compute r_{2}, r_{3}, r_{4}, and r_{5}.
(ii) Determine all rational values of r_{1} with the property that there is some integer $n \geq 1$ for which $f\left(r_{n}\right)$ is undefined. For all other values of r_{1}, find simplified formulas for r_{2023} and r_{2024} in terms of r_{1}.
(c) Suppose $f(r)=\frac{r+2}{r+1}$.
(i) With $r_{1}=1$, compute r_{2} through r_{9}. Write down decimal approximations of r_{2} through r_{9} (after computing them exactly).
(ii) Suppose r is a positive rational number. Prove that

$$
\left|\frac{f(r)-\sqrt{2}}{r-\sqrt{2}}\right|=\left|\frac{1-\sqrt{2}}{r+1}\right|
$$

(iii) Suppose r_{1} is a positive rational number. Prove that $\left|r_{n}-\sqrt{2}\right|<\frac{1}{2^{n-1}}\left|r_{1}-\sqrt{2}\right|$ for each $n \geq 2$. Use this result to convince yourself that as n gets large, r_{n} gets close to $\sqrt{2}$, regardless of the choice of the positive value r_{1}. Can you modify f slightly so that the sequence always approaches $\sqrt{3}$?
(d) Explore the behaviour of the sequences generated by various values of r_{1} for each of the functions below. Detailed solutions will not be provided, but a brief discussion will.

$$
f(r)=\frac{r-3}{r-2}, \quad f(r)=\frac{r-1}{5 r+3}, \quad f(r)=\frac{r-1}{r+2}, \quad f(r)=\frac{2 r+2}{3 r+3}, \quad f(r)=\frac{r+1}{r-2}
$$

