Problem of the Month
Problem 0: September 2023

Hint

(a) \(f(r) \) is undefined only when \(r = -2 \). For what value of \(r \) is \(f(r) = -2? \)

(b) The sequence in part (i) is periodic. Can you show that the sequence is periodic for other values of \(r_1? \)

(c) (ii) After substituting the expression for \(f(r) \), multiply the numerator and denominator by \(r + 1 \). Try to find a common factor in the numerator and denominator.

(iii) Use (ii) and the fact that when \(r \) is positive, \(\left| \frac{1 - \sqrt{2}}{r + 1} \right| < \frac{1}{2} \). Try to establish the given inequality for a few small values of \(n \) and observe how knowing the inequality for \(n \) can help you to deduce it for \(n + 1 \).

(d) Three of these sequences are periodic, one of them is constant (after the first term), and one of them always approaches the fixed value \(\frac{3 - \sqrt{13}}{2} \) as long as there are no undefined values in the sequence.