Problem of the Month
 Problem 0: September 2023

Hint

(a) $f(r)$ is undefined only when $r=-2$. For what value of r is $f(r)=-2$?
(b) The sequence in part (i) is periodic. Can you show that the sequence is periodic for other values of r_{1} ?
(c) (ii) After substituting the expression for $f(r)$, multiply the numerator and denominator by $r+1$. Try to find a common factor in the numerator and denominator.
(iii) Use (ii) and the fact that when r is positive, $\left|\frac{1-\sqrt{2}}{r+1}\right|<\frac{1}{2}$. Try to establish the given inequality for a few small values of n and observe how knowing the inequality for n can help you to deduce it for $n+1$.
(d) Three of these sequences are periodic, one of them is constant (after the first term), and one of them always approaches the fixed value $\frac{3-\sqrt{13}}{2}$ as long as there are no undefined values in the sequence.

