
Problem of the Month
Solution to Problem 8: May 2022

In each part, the solid will be a figure that has rotational symmetry about the x-axis. For each
x-value, this means if we slice the solid by a plane perpendicular to the x-axis at that x-value,
the cross section of the solid will be a circle with its centre on the x-axis. Thus, to describe the
solid of revolution in each part, we need to determine, for each x-value, the radius of this cross
sectional circle. To do this, we will examine the corresponding cross sections of the cube. The
radius of the circular cross section of the solid of revolution will be the distance from the x-axis
to the point in the cross section of the cube that is farthest from the x-axis. The GeoGebra
applets provided in the hint may be useful for visualizing these cross sections.

The approach in each part will be as follows:

• Determine the range of x-values occupied by the cube, which will be called I.

• For each a ∈ I, describe the cross section of the cube when it is sliced by the plane with
equation x = a. [That is, the plane perpendicular to the x-axis that intersects the x-axis
at x = a.]

• Let f be the function with domain I so that for each a ∈ I, f(a) is the largest possible
distance to the x-axis from a point in the cross section of the cube at x = a.

• The solid of revolution is that which has circular cross sections with radius f(a) at each
a ∈ I.

• The region in the xy-plane is the set of points with x ∈ I that are above the graph of
y = −f(x) and below the graph of y = f(x).

(a) Since the cube is centred at the origin and its sides have length 1, the cube is initially

positioned along the interval I =

[
−1

2
,
1

2

]
. Because the x-axis is perpendicular to two

faces of the cube, when we slice the cube by any plane that is perpendicular to the x-axis,
the cross section is a unit square with its centre on the x-axis.

In any square, the points that are farthest from the centre are the four vertices. The
distance from the centre to a vertex is half the length of the diagonal of the square. By
the Pythagorean theorem, the length of the diagonal of a unit square is

√
12 + 12 =

√
2,

so the distance from the centre of the square to a vertex is

√
2

2
.

Thus, for any a ∈
[
−1

2
,
1

2

]
, we have that f(a) =

√
2

2
. The solid of revolution is the cylinder

that is parallel to the x-axis that has radius

√
2

2
and height 1. The cylinder intersects the

xy-plane in a rectangle, and that rectangle is the set of points that are bound by the

horizontal lines with equations y =

√
2

2
and y = −

√
2

2
on the interval

[
−1

2
,
1

2

]
. This

region is pictured below.
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x
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2

x = −1
2

y =
√
2
2

y = −
√
2
2

(b) The distance between the midpoints of two opposite edges of a cube is the same as the
length of the diagonal of any face. By the computation in part (a), this length is

√
2. Since

the cube is centred at the origin, the interval I in this part is

[
−
√

2

2
,

√
2

2

]
. In the diagram

below, the cube is seen in its original position. On the left, the entire cube is pictured. On
the right, a piece has been removed to show a generic cross section, which is shaded.

The shaded cross section appears to be a rectangle. To explain why it is indeed a rectangle,
we first note that the plane with equation x = a with a > 0 intersects four faces of the
cube, and each of these intersections gives a line segment. This means that the cross
section is a quadrilateral. To see that this quadrilateral is indeed a rectangle, we will label
some points on the surface of the cube. The vertices of the cube that are on the plane
with equation x = 0 will be labelled A, B, C, and D with A at the “top front”, B at the
“top back”, C at the “bottom back”, and D at the “bottom front”. As well, the points
where the plane with equation x = a intersect the edges of the cube will be labelled E, F ,
G, and H in such a way that segments AE, BF , CG, and DH all lie on edges of the cube.

A

B

C

D

E

F

G
H

The plane through A, B, C, and D is perpendicular to the x-axis because of the way the
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cube is positioned. Therefore, the plane through A, B, C, and D is parallel to the plane
with equation x = a. Hence, AD, BC, FG, and EH are all parallel. By similar reasoning,
EF is parallel to HG, so EFGH is a parallelogram. As well, AD is perpendicular to
the top face of the cube, which means EH is perpendicular to the top face of the cube.
This means that EH is perpendicular to any line through E and another point in the top
face. Hence, EH is perpendicular to EF . A parallelogram with a right angle must be a
rectangle, which shows that EFGH is a rectangle. Also note that AEHD is a rectangle
for similar reasoning.

By symmetry, the centre of the rectangular cross section is on the x-axis. Thus, the circular
cross section at x = a of the solid of revolution has a radius equal to the distance from the
centre of the rectangular cross section of the cube to any of its four vertices. This radius is
half the length of the diagonal of the rectangular cross section, which can be found using
the Pythagorean theorem once we know the side lengths, so it remains to determine the
dimensions of the cross section at x = a, which we expect to depend on the value of a. By
symmetry, it is enough to consider a > 0.

As noted above, AEHD is a rectangle, so EH = AD = 1, which is independent of the
value of a. The length of EF does depend on the value of a. Below is a diagram of the
top face of the cube. The centre of the top face has been labelled by P , the corner of the
top face that was removed in the previous diagram is labelled by R, and the point where
the line segment PR intersects EF is labelled by Q.

P Q
R

E

F

The length of PR is equal to

√
2

2
=

1√
2

because it is half the length of the diagonal of

a unit square. As well, PQ has length a by assumption, and EF is perpendicular to PQ
because PQ is parallel to the x-axis and EF is perpendicular to the x-axis. Therefore,
QR is an altitude of 4FQR. The line connecting the centre of a square to one of its
vertices must be an angle bisector, which means that ∠PRF = ∠PRE = 45◦. Since
∠FQR = ∠EQR = 90◦, we also have ∠QFR = ∠QER = 45◦, which means that 4FQR
and 4EQR are both isosceles. Therefore, QE = QR = QF , but QR =

1√
2
− a, so

EF = QE +QF = 2QR = 2

(
1√
2
− a
)

=
√

2− 2a

Therefore, the diagonal length of the rectangular cross section at x = a is

√
EH2 + EF 2 =

√
12 + (

√
2− 2a)2 =

√
3− 4

√
2a+ 4a2
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For x ≥ 0, we have that f(x) =
1

2

√
3− 4

√
2x+ 4x2. By symmetry, the function f on the

interval should be an even function on I, which means f(x) = f(−x). This means that we
can replace x by −x to determine f(x) when x < 0. After doing this, we find that f(x) is
defined piecewise by

f(x) =


1

2

√
3 + 4

√
2x+ 4x2 if −

√
2

2
≤ x < 0

1

2

√
3− 4

√
2x+ 4x2 if 0 ≤ x ≤

√
2

2

Below is a diagram of the region above the graph of y = −f(x) and below the graph of

y = f(x) on the interval

[
−
√

2

2
,

√
2

2

]
.

x

y

(√
2
2
,−1

2

)

(√
2
2
, 1
2

)

(
−
√
2
2
,−1

2

)

(
−
√
2
2
, 1
2

)

(
0,−

√
3
2

)

(
0,
√
3
2

)

(c) In this part, we observe that the distance between two opposite vertices of a cube is the
length of the hypotenuse of a right-angled triangle with one leg equal to an edge of the
cube and one leg equal to the diagonal of a face of the cube. This is pictured below.

The length of the diagonal of a unit square is
√

2, so the distance between two opposite ver-

tices of the cube is
√

(
√

2)2 + 12 =
√

3. Thus, in this part, the interval is I =

[
−
√

3

2
,

√
3

2

]
.

In this part, the cross sections come in two “types”. If x is close enough to 0, then the
cross section is a hexagon. Otherwise, the cross section is an equilateral triangle.
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Consider the vertices of the cube that are to the right of the origin. By rotational symmetry,
if the cube is rotated 120◦ around the x-axis, these vertices (other than those on the x-axis)
will take each other’s positions. Therefore, they must all have the same x-coordinate, so
there is some α > 0 such that the plane with equation x = α passes through all three
of these vertices. Similarly, there is β < 0 so that the plane with equation x = β passes
through all three of the vertices of the cube that are not on the x-axis and have a negative
x-coordinate. The diagram below is of a cube positioned with two opposite vertices on
the x-axis but viewed at an angle perpendicular to the x-axis. This gives some indication
of the different cross sections and where they change type. The dashed vertical lines are
meant to represent the planes with equations x = α and x = β.

x = β x = α

(√
3
2
, 0
)(

−
√
3
2
, 0
)

Suppose α < a <

√
3

2
. The plane with equation x = a intersects three faces of the

cube, so the cross section of the cube at x = a is a triangle. The rotational symmetry
of the cube implies that this triangle has 120◦ rotational symmetry about the x-axis, and
such a triangle must be equilateral since it must have three equal angles. Similarly, if

−
√

3

2
< a < β, then the cross section at x = a is also an equilateral triangle.

For β < a < α, the plane with equation x = a intersects all 6 faces of the cube. The plane
intersects each face in a line segment, so the cross section must be a hexagon since each of
these line segments will be a side of the cross section. There is no reason to expect it to
be a regular hexagon, but it will have 120◦ rotational symmetry, which will be used later.

We will delay computing the values of α and β, though we will observe that, by symmetry,
α = −β, and it suffices to analyze the cross sections at x = a for a > 0.

To analyze the triangular cross sections, we will use the following fact.

Fact 1: Suppose tetrahedron ABCD has equilateral base 4ABC and its other three
faces satisfy ∠ADB = ∠BDC = ∠CDA = 90◦ and AD = BD = CD. If E is the point

in 4ABC so that DE is the altitude of the tetrahedron from D, then DE =
AD√

3
and

AE =
√

2DE.

Proof. By symmetry, AE = BE = CE.
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A B

C

D

E

Since 4ADB is isosceles and right-angled with hypotenuse AB, we get that AB =
√

2AD.
We also have that4AEB, 4BEC, and4CEA are all congruent by side-side-side congru-
ence. As well, ∠AEB + ∠BEC + ∠CEA = 360◦, so since they are equal by congruence,
they are all equal to 120◦. Because AE = BE, it follows that 4AEB is isosceles and that

∠ABE =
180◦ − 120◦

2
= 30◦.

Using the Sine law, we have
AE

sin 30◦
=

AB

sin 120◦
, from which it follows that

AE =
AB sin 30◦

sin 120◦
=
AB√

3
=

√
2AD√

3

We can now use the Pythagorean theorem on 4ADE to get that

DE =
√
AD2 − AE2 =

√√√√AD2 −

(√
2√
3
AD

)2

= AD

√
1− 2

3
=
AD√

3

which is one of the claims in the fact. The other now follows by rearranging the equation

above to get AD =
√

3DE then substituting into AE =

√
2AD√

3
to get

AE =

√
2AD√

3
=

√
2(
√

3DE)√
3

=
√

2DE

We can now compute the value of α as well as f(a) for each a with α < a <

√
3

2
.

When we take the cross section at x = a with α ≤ a <

√
3

2
, we have already argued that the

cross section is an equilateral triangle. Taking such a cross section “removes” a tetrahedral
corner of the cube with this cross section as its base. By rotational symmetry and the fact
that the faces of a cube are squares, the other three faces of this “removed” tetrahedron
are isosceles right-angled triangles. Thus, the tetrahedron satisfies the conditions of Fact 1.
Moreover, points E and D are on the x-axis and f(a) is equal to the length of AE.

When a = α, AD is an edge of the cube, so AD = 1 which gives DE =
AD√

3
=

1√
3

by

Fact 1. As well, α =

√
3

2
−DE, which means

α =

√
3

2
−DE =

√
3

2
− 1√

3
=

1

2
√

3
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For any a with
1

2
√

3
≤ a <

√
3

2
, the tetrahedron hasDE =

√
3

2
−a, and sinceAE =

√
2DE,

we get

f(a) = AE =
√

2DE =
√

2

(√
3

2
− a

)
=

√
3√
2
−
√

2a

While we have not yet determined how to compute f(x) for all x ∈ I, we do now have for

x ∈

[
1

2
√

3
,

√
3

2

)
that f(x) =

√
3√
2
−
√

2x. Notice that at x =

√
3

2
, f(x) = 0, which makes

sense. You may want to think about this.

Next we will examine the hexagonal cross sections for 0 ≤ a <
1

2
√

3
. We will use the

following fact.

Fact 2: Suppose that ABCDEF is a hexagon that has opposite sides parallel (that is,
AB and DE are parallel, BC and EF are parallel, and CD and FA are parallel) and has
a point G in its interior so that the hexagon has 120◦ rotational symmetry about G. Then
G is equidistant from all six vertices of the hexagon.

Proof. Below is a diagram of such a hexagon with AB and DC extended to meet at P ,
CD and FE extended to meet at Q, and EF and BA extended to meet at R. Point G is
also connected to each vertex of the hexagon as well as to P , Q, and R.

A B

C

DE

F G

P

Q

R

The fact that the hexagon has 120◦ rotational symmetry means that it also has 240◦

rotational symmetry. This means that it has 120◦ rotational symmetry both clockwise
and counterclockwise. A clockwise rotation will send A to the position of C, B to D,
C to E, D to F , E to A, and F to B. Since the rotation is around G, this implies that
GA = GC = GE and GB = GD = GF , as well as AB = CD = EF and BC = DE = FA.
Finally, by the way P , Q, and R are defined, the rotational symmetry also implies that
4PQR has 120◦ rotational symmetry about G. From an earlier argument, this implies
4PQR is equilateral and that G is equidistant from P , Q, and R.

By properties of parallel lines, we get that ∠RAF = ∠EDQ = ∠BPC, but from the
previous paragraph we have ∠BPC = ∠ARF = 60◦, so 4RAF has two angles equal to
60◦. Therefore, it is equilateral.

Since GP = GR = GQ and PQ = QR = RP , it must be that 4GPQ, 4GQR, and
4GRP are all congruent by side-side-side congruence. It follows that ∠GRQ = ∠GRP ,
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and since their sum is 60◦, they are both equal to 30◦. Let H be the point of intersection
of GR and AF . We know that ∠RAF = 60◦, and so it follows that ∠RHA = 90◦. As well,
4FRH and 4ARH are congruent by side-angle-side congruence, so FH = AH. Since
∠RHA = 90◦, so do each of ∠FHG and ∠AHG, so we now conclude that 4FHG and
4AHG are congruent by side-angle-side congruence. This means GA = GF , and since
GA = GC = GE and GB = GD = GF , it follows that G is equidistant from all six
vertices of the hexagon.

The cube has 120◦ rotational symmetry about the x-axis, and so if we take any a with

0 ≤ a <
1

2
√

3
, the hexagonal cross section must also have 120◦ rotational symmetry about

the point where the plane with equation x = a intersects the x-axis. As well, opposite
faces of the cube are parallel, so opposite sides of the hexagonal cross section must also be
parallel. By Fact 2, the six vertices of the cross section are equidistant from the x-axis.

This means that f(a) is the distance from the x-axis to any of the six points where the
plane with equation x = a intersects an edge of the cube.

Consider the diagram of the cube below. The vertices of the cube that are on the x-axis

are labelled by A and B, one of the vertices of the cube with x-coordinate equal to
1

2
√

3
is labelled by C, and 4ABC is in bold red.

A B

C

x = 1
2
√
3

(√
3
2
, 0
)(

−
√
3
2
, 0
)

We know that AB =
√

3, AC =
√

2 and BC = 1. Suppose 0 ≤ a <
1

2
√

3
and consider the

cross section at x = a. Let E be the point on the x-axis at x = a, which implies that E
is on AB. As well, let D be the point at which the plane with equation x = a intersects
AC. The plane is perpendicular to the x-axis, which means that ∠AED = 90◦.

B

C

A E

D
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The length of AE is

√
3

2
+ a, and 4AED is similar to 4ACB since they share an angle

at A and ∠AED = ∠ACB = 90◦. Therefore,
AD

AE
=
AB

AC
=

√
3√
2

which gives

AD =

√
3√
2

(√
3

2
+ a

)
=

3

2
√

2
+

√
3a√
2

As well,
ED

AE
=
CB

AC
=

1√
2

and so

ED =
1√
2

(√
3

2
+ a

)
=

√
3

2
√

2
+

a√
2

Next, let G and H be the other two vertices of the cube that are on the same face as A
and C and let M and N be the points where the plane with equation x = a intersects GC
and HC, respectively.

A

C

D

G H

M N

The plane with equation x = − 1

2
√

3
contains both G and H and is parallel to the plane

with equation x = a. Since segments GH and MN are themselves in the same plane,
they must be parallel. It follows that 4CMN is an isosceles right-angled triangle. By an
argument used in part (b), it follows that MD = CD = ND. We have that AC =

√
2 and

AD =
3

2
√

2
+

√
3a√
2

, which means

MD = ND = CD = AC − AD =
√

2−

(
3

2
√

2
+

√
3a√
2

)
=

1

2
√

2
−
√

3a√
2

Now consider4EMN with D on MN . By the fact from earlier about hexagons, we already
know that EM = EN . We have just shown that MD = ND. Since they also share side
ED, we get that 4EDN and 4EDM are congruent by side-side-side congruence. Thus,
∠EDM = ∠EDN and their sum is 180◦, so 4EDN is right-angled at D. Therefore, the
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length of EN , which is f(a), can be computed using the Pythagorean theorem.

f(a) = EN =
√
ED2 +ND2

=

√√√√( √3

2
√

2
+

a√
2

)2

+

(
1

2
√

2
−
√

3a√
2

)2

=

√
3

8
+

√
3a

2
+
a2

2
+

1

8
−
√

3a

2
+

3a2

2

=

√
1

2
+ 2a2

We can now define f(x) on

[
0,

√
3

2

]
as a piecewise function:

f(x) =


√

1

2
+ 2x2 if 0 ≤ x <

1

2
√

3√
3√
2
−
√

2x if
1

2
√

3
≤ x ≤

√
3

2

To extend f to all of I, we observe that, like in part (b), f(x) = f(−x). Thus, we can

define f(x) on

[
−
√

3

2
, 0

]
by substituting x = −x. Note that since (−x)2 = x2, the function

definition is the same for − 1

2
√

3
< x ≤ 0 as it is for 0 ≤ x <

1

2
√

3
. Thus, we get that

f(x) =



√
3√
2

+
√

2x if −
√

3

2
≤ x ≤ − 1

2
√

3√
1

2
+ 2x2 if − 1

2
√

3
< x <

1

2
√

3√
3√
2
−
√

2x if
1

2
√

3
≤ x ≤

√
3

2

Below is a diagram of the region above the graph of y = −f(x) and below that of y = f(x).

x

y
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