Problem:
A positive integer has exactly eight positive factors. If two of the factors are 21 and 35, what is the positive integer?

For some integer n, a factor of n is a non-zero integer that divides evenly into n. For example, 3 is a factor of 18 since $18 \div 3 = 6$, but 4 is not a factor of 18 since $18 \div 4 = 4.5$.

Solution:
Let n represent the number we are looking for.

We know that four of the positive factors of n are 1, 21, 35 and n. In our solution we will first find the remaining four positive factors and then determine n.

Since 21 is a factor of n and $21 = 3 \times 7$, 3 and 7 must also be factors of n.

Since 35 is a factor of n and $35 = 5 \times 7$, 5 must also be a factor of n.

Since 3 is a factor of n and 5 is a factor of n, and since 3 and 5 have no common factors, $3 \times 5 = 15$ must also be a factor of n.

We have found all eight of the positive factors of the unknown number. The positive factors are 1, 3, 5, 7, 15, 21, 35 and n. We now need to determine n.

From the list of factors, we see that the prime factors of n are 3, 5 and 7, and it follows that $n = 3 \times 5 \times 7 = 105$.

Therefore, the positive integer is 105.