Problem 1

(a) The perimeter consists of two lengths ℓ and two widths w. Since adding two widths and two lengths together gives 16 cm, adding one width and one length together must give $16 \div 2 = 8$ cm. This means the sum of the length and the width must be 8 cm, or

$$\ell + w = 8 \text{ cm}$$

(b) There are only three ways to make 8 by adding two different positive whole numbers:

$$1 + 7 = 8, \ 2 + 6 = 8, \ 3 + 5 = 8$$

Since the length is greater than the width, the only possibilities for ℓ and w, in centimetres, are shown in the table below.

<table>
<thead>
<tr>
<th>width w</th>
<th>length ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Problem 2

(a) With the sides labelled as shown in the top diagram on the right, we see that the length ℓ is equal to three widths w.

(b) The only pair from Problem 1(b) for which the length is three times the width is the pair $\ell = 6$ cm and $w = 2$ cm.

(c) If each smaller identical rectangle has length 6 cm and width 2 cm, then the area of each smaller rectangle is $6 \times 2 = 12 \text{ cm}^2$.

Since there are 5 smaller rectangles making up the larger rectangle, the area of the larger rectangle must be $5 \times 12 \text{ cm}^2 = 60 \text{ cm}^2$.

Challenge Problem

(a) Since the total area of the larger rectangle is 84 cm2 and it is formed using seven smaller identical rectangles, the area of each smaller rectangle must be $84 \div 7 = 12 \text{ cm}^2$.

(b) With the sides labelled as shown in the top diagram on the right, we see that three lengths a are equal to four widths b. Since the area of each smaller rectangle is 12 cm2 we know that a times b must be 12. The factor pairs of 12 are 1 and 12, 2 and 6, and 3 and 4. The only pair that satisfies the correct relationship is 3 and 4. This means $a = 4$ cm and $b = 3$ cm.

(c) Using the labelled diagram, we see that the larger rectangle has length 12 cm and width 7 cm. This means its perimeter is

$$12 \text{ cm} + 7 \text{ cm} + 12 \text{ cm} + 7 \text{ cm} = 38 \text{ cm}$$