Intermediate Math Circles
Wednesday 05 October 2016
Problem Set 1

1. In the diagram, AB is parallel to CD. Determine the values of x and y.

2. Triangle ABC has a right angle at B. AC is extended to D so that $CD = CB$. The bisector of angle A meets BD at E. Prove that $\angle AEB = 45^\circ$.

3. In the diagram, AB is parallel to DC and $AB = BD = BC$. If $\angle A = 52^\circ$, determine the measure of $\angle DBC$.

4. The diagram shows three squares of the same size. What is the value of x?
5. The diagram shows a rhombus $FGHI$ and an isosceles triangle FGJ in which $GF = GJ$. Angle FJI equals 111°. What is the measure of angle JFI?

6. $ABCD$ is a square. The point E is outside the square so that CDE is an equilateral triangle. Determine the measure of angle BED.

7. The diagram shows two isosceles triangles in which the four angles marked x are equal. The two angles marked y are also equal. Find an equation relating x and y.

8. In the diagram, QSR is a straight line. $\angle QPS = 12^\circ$ and $PQ = PS = RS$. What is the measure of $\angle QPR$?
9. The diagram shows a regular nonagon with two sides extended to meet at point X. What is the size of the acute angle at X?

10. The three angle bisectors of triangle LMN meet at a point O as shown. Angle LNM is 68°. What is the size of angle LOM?

11. In the figure shown, $AB = AF$ and ABC, AFD, BFE, and CDE are all straight lines. Determine an equation relating x, y and z.

12. The angles of a nonagon are nine consecutive numbers. What are these numbers?
13. What is the measure of the angle formed by the hands of a clock at 9:10?

14. Determine the sum of the angles A, B, C, D, and E in the five-pointed star shown.

15. In $\triangle PQR$, $PQ = PR$. PQ is extended to S so that $QS = QR$. Prove that $\angle PRS = 3(\angle QSR)$.

16. A regular pentagon is a five-sided figure which has all of its angles equal and all of its side lengths equal. In the diagram, $TREND$ is a regular pentagon, PEA is an equilateral triangle, and $OPEN$ is a square. Determine the size of $\angle EAR$.
17. A beam of light shines from point S, reflects off a reflector at point P, and reaches point T so that PT is perpendicular to RS. What is the value of x?

18. In the diagram, let M be the point of intersection of the three altitudes of triangle ABC. If $AB = CM$, then what is $\angle BCA$ in degrees?

19. In the diagram, PW is parallel to QX, S and T lie on QX, and U and V are the points of intersection of PW with SR and TR, respectively. If $\angle SUV = 120^\circ$ and $\angle VTX = 112^\circ$, what is the measure of $\angle URV$?
20. Three regular polygons meet at a point and do not overlap. One has 3 sides and one has 42 sides. How many sides does the third polygon have? Can you find other sets of three polygons that have this property?

Answers

1. \(x = 10^\circ, y = 150^\circ \)
2. \(\angle DBC = 28^\circ \)
3. \(\angle JFI = 27^\circ \)
4. \(x = 120^\circ \)
5. \(\angle BED = 45^\circ \)
6. \(\angle QPR = 54^\circ \)
7. \(y = 2x \)
8. \(\angle LOM = 124^\circ \)
9. \(60^\circ \)
10. \(x - y + 2z = 180^\circ \)
11. \(136^\circ \) to \(144^\circ \)
12. \(\angle EAR = 39^\circ \)
13. \(x = 32^\circ \)
14. \(\angle BCA = 45^\circ \)
15. \(\angle URV = 52^\circ \)
16. \(7 \) sides