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Modular Arithmetic

1 Introduction: The 12-hour Clock

Question: If it’s 7 pm now, what time will it be in 7 hours? 2 am

How about in 30 hours? 1 am after tomorrow

Now, this is a simple example that we’re all familiar with, but how did we actually calculate

this? Can you simplify this into 2 or 3 simple steps?

¬ Add 7 (time it is now) to 7 or 30 (number we’re asked to add).

­ Keep subtracting 12 from this sum until you get a number less than 12.

2 Review of Divisibility

Definition: An integer x is divisible by an integer n if x ÷ n is an integer (ie. there is no

remainder when x is divided by n). We write x | n, which is read “x is divisible by n”.

Can you think of another way to ask “Is x divisible by n?”

Exercise 1

(a) Is 15 divisible by 3? Yes

(b) Is 75 divisible by 2? No

Note: this is another way of asking if 75 is even

(c) Is 50 divisible by 15? No

(d) is 150 divisible by 3? Yes
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3 Modular Operator

The modular operator might seem a little intimidating at first, but it’s really not. All it does

is, given 2 integers (x and n), it produces the remainder when the first number is divided by

the second.

Notation: x (mod n) = r

This means that when x is divided by n, there is a remainder of r.

We say: “x modulo n is equal to r”.

Examples:

(a) 7 (mod 4) = 3

(b) 15 (mod 3) = 0

(c) 19 (mod 4) = 3

(d) 21 (mod 5) = 1

Exercise 2: Calculate each of the following.

(a) 7 (mod 5) = 2

(b) 8 (mod 4) = 0

(c) 8 (mod 3) = 2

(d) 17 (mod 8) = 1

(e) 37 (mod 6) = 1

(f) 124 (mod 60) = 4

3.1 Modular Addition

Modular addition is actually quite straight forward.

For example:
(1 + 2) (mod 4) = 3

(4 + 5) (mod 5) = 9 (mod 5) = 4

Pretty simple right? What if it got more complicated though, like this one?

(187468 + 847361) (mod 2) =

This is not an easy calculation, unless you have a calculator, but that defeats the purpose

of modular arithmetic, which is to simplify complicated calculations.

So, we propose an idea: What if we were to calculate each number with respect to that

modulo before we add them together? Now this complicated question becomes really simple:

(187468 + 847361) (mod 2) = (0 + 1) (mod 2) = 1
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The next natural thought would be to define modular addition as the following:

(x + y) (mod n) = x (mod n) + y (mod n)

For example: (7 + 6) (mod 5) = 7 (mod 5) + 6 (mod 5) = (2 + 1) (mod 5) = 3

Try this one: (19+28) (mod 5) = 19 (mod 5) + 28 (mod 5) = (4 + 3) (mod 5) = 7 (mod 5) = 2

As we see with this example, we can’t just calculate each number with respect to (mod n)

and add them together, sometimes we are required to simplify the sum in with respect to

(mod n) after we sum them. So we define modular addition as:

(x + y) (mod n) = [x (mod n) + y (mod n)] (mod n)

In general, we know we’ve simplified it as much as possible when the result is less that n.

Exercise 3: Calculate each of the following.

(a) 5 + 9 (mod 8) = 5 + 1 (mod 8) = 6

(b) 43 + 37 (mod 10) = 3 + 7 (mod 10) = 10 (mod 10) = 0

(c) 124 + 199 (mod 5) = 4 + 4 (mod 5) = 8 (mod 5) = 3

(d) 34 + 121 (mod 11) = 1 + 0 (mod 11) = 1

3.2 Modular Multiplication

Modular multiplication is very similar to modular addition. We define it as:

(x× y) (mod n) = [x (mod n) ×y (mod n)] (mod n)

Exercise 4: Calculate each of the following.

(a) 5× 9 (mod 8) = 5× 1 (mod 8) = 5

(b) 7× 15 (mod 7) = 0× 1 (mod 9) = 0

(c) 5782× 2579 (mod 10) = 2× 9 (mod 10) = 18 (mod 10) = 8

(d) 603× 123 (mod 60) = 3× 3 (mod 60) = 9

(e) 16× 25 (mod 12) = 4× 1 (mod 12) = 4

(f) 34× 122 (mod 11) = 1× 1 (mod 11) = 1
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4 Common Bases

Modular artihmetic are used in the real world on a daily basis. As we saw in the introduction

of this lesson, base 12 is a common one used in analog clocks. Here are some other commonly

used bases:

Base Application Example

2

Even/odd numbers
A number n is even if n (mod 2) = 0, and odd

otherwise.

Binary codes
We also use base 2 when using converting from

binary to decimal form, as we will see later.

4
Years between 2 consecutive

leap years (in general)

If any given year n is either [n (mod 400) = 0]

or [n (mod 4) = 0 and n (mod 100) 6= 0] then

it is a leap year, otherwise it isn’t.

7 Days in a week
If today is Sunday, then in 16 days it will be

a Tuesday (since 16 (mod 7) = 2 ).

10 Metric measurements

We use base 10 when converting between met-

ric measurments, such as metres to millime-

tres.

12 Hours on an analog clock
If it’s 7 pm now, it will be 2 am in 7 hours

(since (7 + 7) (mod 12) = 14 (mod 12) = 2).

24 Hours in a day
If its 2 pm now, in 54 hours it will be 8 am

(since (54 + 2) (mod 24) = 8).

28, 29,

30, 31
Days in a month

If today is the 4th of April, then it will be the

8th of May in 34 days.

52 Weeks in a year
If today is the 6th week of the year, then it will

be the 16th week of next year in 62 weeks.

60
Seconds in a minute and minutes

in an hour

155 seconds is equivalent to 2 minutes and 35

seconds.

100 Years in a century
In 344 years, it will be the 60th year of that

century, since (344 + 2016) (mod 100) = 60.

360 Degrees in a full circle
Rotating 420° is equivalent to rotating 60°
since 420 (mod 360) = 60.

365 Days in a year
If today is the 65th day of the year, then in 750

days, it will be 85th day of that year.
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5 Binary Numbers and Codes

A binary code is any system that only uses 2 states: 1/0, on/off, true/false etc.

A binary number is any number containing only 1’s and 0’s. These are all examples of binary

numbers:

101 000000 1111111 10001001010010 10001111101010 0101010101010

Binary numbers have all sorts of applications, many of which are used on a daily basis, like:

• Computers

• Calculators

• TV’s

• Barcodes

• CD’s and DVD’s

• Braille

Binary codes are also used in many work fields, such as computer science, software engineer-

ing and electrical engineering - and basically all other fields of engineering too!

There are multiple ways to express a binary code, the two most common forms of writing a

binary code using numbers are ‘Decimal form’ and ‘Binary form’.

For example: 1101 in binary form becomes 13 in decimal form. And 1001 becomes 9.

Now, the conversion between these may not be obvious, but it’s pretty easy. Before we jump

into converting between binary and decimal forms, let’s do a quick review on exponents:

x0 = 1

x1 = x

x2 = x× x

x3 = x× x× x

x4 = x× x× x× x

x5 = x× x× x× x× x

and so on... (for any x)

Also, fill out this table, it will be very useful for the rest of the lesson.

n 0 1 2 3 4 5 6 7 8

2n 20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 26 = 64 27 = 128 28 = 256

5



5.1 Converting Binary to Decimal

To convert a binary number to its decimal form, follow these 3 simple steps:

À Write out the number - but leave lots of space between your digits, like this:

1 0 0 1

Á Multiply each number by a 2, and starting with an exponent of 0 on the very last 2, and

increase the exponent by 1 each time, like this:

[1× (23)] [0× (22)] [0× (21)] [1× (20)]

Â Sum them up and calculate:

[1× (23)] + [0× (22)] + [0× (21)] + [1× (20)]

=[1× (8)] + [0× (4)] + [0× (2)] + [1× (1)]

=8 + 0 + 0 + 1 = 9

Exercise 5: Convert each of the follwing binary numbers to decimal form.

(a) 110→ 1(22) + 1(21) + 0(20) = 4 + 2 + 0 = 6

(b) 101→ 1(22) + 0(21) + 1(20) = 4 + 0 + 1 = 5

(c) 00111→ 0(24) + 0(23) + 1(22) + 1(21) + 1(20) = 4 + 2 + 1 = 7

(d) 100001→ 1(25) + 0 + 0 + 0 + 0 + 1(20) = 32 + 1 = 33
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5.2 Converting Decimal to Binary

Now this is the part where modular arithmetic comes in handy!

We know that if we compute any number (mod 2) it will either be 0 or 1, and so that’s

exactly what we use for converting decimal numbers to binary.

Basically, we compute our number (mod 2) and that will be our last digit. Then we compute

our quotient (mod 2) and place that as our 2nd last digit, and so on until our quotient is 0.

For example: Converting 13 to binary form, we would do the following.

Now reading from the bottom up, 13 in decimal form is 1101 in binary form.

Note: Your last step should always be the same as the one above.

Exercise 6: Convert each of the following numbers to binary form.

(a) 76 (b) 193 (c) 97 (d) 255

76 = 2(38) + 0 193 = 2(96) + 1 97 = 2(48) + 1 255 = 2(127) + 1

38 = 2(19) + 0 96 = 2(48) + 0 48 = 2(24) + 0 127 = 2(63) + 1

19 = 2(9) + 1 48 = 2(24) + 0 24 = 2(12) + 0 63 = 2(31) + 1

9 = 2(4) + 1 24 = 2(12) + 0 12 = 2(6) + 0 31 = 2(15) + 1

4 = 2(2) + 0 12 = 2(6) + 0 6 = 2(3) + 0 15 = 2(7) + 1

2 = 2(1) + 0 6 = 2(3) + 0 3 = 2(1) + 1 7 = 2(3) + 1

1 = 2(0) + 1 3 = 2(1) + 1 1 = 2(0) + 1 3 = 2(1) + 1

⇒ 1001100 1 = 2(0) + 1 ⇒ 1100001 1 = 2(0) + 1

⇒ 11000001 ⇒ 11111111

7



6 Problem Set

1. Calculate each of the following

(a) 100 (mod 3) = 1

(b) 451 (mod 5) = 1

(c) 490 (mod 7) = 0

(d) 234 (mod 4) = 2

(e) 478 (mod 6) = 4

(f) 582 (mod 9) = 540 (mod 9) + 42 (mod 9) = 6

(g) 679 (mod 8) = 640 (mod 8) + 39 (mod 8) = 7

(h) 12 + 18 (mod 9) = 4

(i) 73 + 58 (mod 12) = 1 + 10 (mod 12) = 11

(j) 74× 93 (mod 13) = 9× 2 (mod 13) = 18 (mod 13) = 5

(k) 33× 266 (mod 26) = 7× 6 (mod 26) = 42 (mod 26) = 16

2. Complete the following table by either converting the given binary number to decimal

form or vice versa.

Binary Decimal

(a) 0101 5

(b) 100111 39

(c) 1111 15

(d) 10100 20

(e) 1010101 85

(f) 10010110 150

(g) 101101 45

(h) 111011 59

3. If my birthday was on Monday, January 5, 2015, what day of the week will my birthday

be on this year (2016)?

365 (mod 7) = 350 (mod 7) + 15 (mod 7) = 0 + 1 (mod 7) = 1

∴ My birthday would have been on Tuesday, January 5th, 2016.
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4. If Mary’s birthday was on a Thursday in 2014, what day of the week will her birthday

be on next year (2017)?

[(365× 2) + 366] (mod 7) = (1× 2) (mod 7) + 2 (mod 7) = 2 + 2 (mod 7) = 4

∴ Mary’s birthday would have been on a Monday, since that is 4 days after Thursday.

5. Using a regular deck of 52 cards, I dealt all the cards in the deck to 3 people (including

myself). Were the cards dealt evenly?

52 (mod 3) = 1

∴ No, it wasn’t dealt evenly.

6. A litre of milk is 4 cups, and one cake recipe uses 3 cups. If I have 8 litres of milk,

how many cakes can I make? And how many cups of milk will be leftover, if any?

8× 4 (mod 3) = 2× 1 (mod 3) = 2
(8×4)−2

3
= 32−2

3
= 30

3
= 10

∴ I will be able to make 10 cakes with 2L of milk leftover.

7. I bought as many mini-erasers as possible at 25 cents each and spent the rest of my

money on paperclips at 3 cents each. How many of each did I buy given that I have

$1.70? Is there anything leftover? (Assume there’s no tax.)

Maximum amount of money I can spend on erasers is $1.50, getting me 6 erasers and

leaving me with $0.20 to buy paper clips.

20 (mod 3) = 2 and since 20 = 3(6) + 2

∴ I can buy 6 erasers and 6 paperclips, and would have 2¢ leftover.

8. I have 5 trays with 6 muffins each that I divided evenly among 4 of my friends, and I

ate the leftovers. How many muffins did each of my friends eat? How many muffins

did I eat?

5× 6 = 30 = 7(4) + 2

∴ Each of my friends ate 7 and I ate 2.

9. If Math Circles started on Tuesday, February 2nd, 2016, and lasts for 44 days, what

day will it end? (Give the full date.)

Note that 44 us not the number of classes there are, rather it is the number of days

in between the first and last day of Math Circles.

44+2 (mod 29) = 15+2 (mod 29) = 17 =⇒ So it will fall on the 17th day of March.

44 (mod 7) = 2 =⇒ So it will fall 2 days after Tuesday, ie. it will fall on a Thursday.

∴ The last day will be Thursday, March 17th, 2016.
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10. If John celebrated his 16th birthday on Wednesday, February 10th, 2016, what day of

the week was he born? (Don’t forget about leap years!)

Clearly John was born in the year 2000. Since his birthday is before February 29th, he

would have lived through 4 leap years (2000, 2004, 2008 and 2012) and 12 years with

365 days each. So we want to calculate:

[(365× 12) + (366× 4)] (mod 7) = [(1× 5) + +(2× 4)] (mod 7) = 5 + 8 (mod 7) = 6

This means that his 16th birthday fell 6 days (in the week) after the day on which he

was born.

So if we work backwards, 6 days before Wednesday is Thursday.

∴ John was born on Thursday, February 10th, 2000.

11. Mary is facing South and rotates 2295° clockwise. Which direction is she facing now?

We want to know how many degrees she rotated CW from South. So we calculate:

2295 (mod 360) = 135

∴ Mary rotated 135°clockwise and so she would be facing North-West.

N

E

S

W

12. (a) How many different 5-digit binary numbers are there?

Solution 1:

We will first approach this question by looking into how many possibilities there are

for each of the 5 digits.

1 1 1 1 1

0 0 0 0

1 × 2 × 2 × 2 × 2 = 16

Notice that the only possible number in the first digit is 1, if it were 0 it would be

considered a 4-digit binary number.
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Solution 2:

We can also approach this question by drawing a tree where the first level represents

the first digit, which can only be filled by a 1. The second row represents the second

digit which can be filled with a 1 or 0 and so on.

1

1

1

1

1 0

0

1 0

0

1

1 0

0

1 0

0

1

1

1 0

0

1 0

0

1

1 0

0

1 0
Counting the number of nodes on the last row, we get an answer of 16.

(b) How many different 5-digit binary numbers are there that have 1 as the last digit?

Solution 1:

Using a similar table from part (a), we have the following:

1 1 1 1 1

0 0 0

1 × 2 × 2 × 2 × 1 = 8

Notice that it is just half of our answer in part (a), because half of the possible 5-digit

numbers end in 1 and the other half end in 0.

Solution 2:

A tree for this question would look something like this:

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

1

0

1

0

1

1

0

1

Counting the number of nodes on the fifth level, we get an answer of 8.
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13. Look back at the table titled “Common Bases”

(a) Was the year 1900 a leap year?

We will calculate 1900 modulo 4, 100 and 400 to test if it was a leap year or not.

1900 (mod 4) = 0

1900 (mod 100) = 0

1900 (mod 400) = 300

∴ No, 1900 wasn’t a leap year, since 1900 (mod 4) = 0 and 1900 (mod 100) = 0

but 1900 (mod 400) 6= 0

(b) Was the year 2000 a leap year?

Similarily, we will calculate 2000 modulo 4, 100 and 400 to test if it was a leap

year or not.

2000 (mod 4) = 0

2000 (mod 100) = 0

2000 (mod 400) = 0

∴ Yes, 2000 was a leap year.

(c) Is the year 2100 going to be a leap year?

We will calculate 2100 modulo 4, 100 and 400 to test if it will be a leap year or

not.

2100 (mod 4) = 0

2100 (mod 100) = 0

2100 (mod 400) = 100

∴ No, 2100 will not be a leap year.

(d) Is the year 2200 going to be a leap year?

We will calculate 2200 modulo 4, 100 and 400 to test if it will be a leap year or

not.

2200 (mod 4) = 0

2200 (mod 100) = 0

2200 (mod 400) = 200

∴ No, 2200 will not be a leap year.
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14. There are seven stacks of coins that look the same. Each stack has exactly 100 coins.

There are two stacks that have counterfeit coins, and all 100 coins in each of those two

stacks are counterfeit. Your task is to figure out which two of the seven stacks contain

the counterfeit coins.

The counterfeit coins weigh 11g each, while the real coins weigh 10g each. You have

an electric balance, but you can only use it to make one measurement.

How can you determine which two stacks contain the counterfeit coins with only one

use of the balance? Explain why the strategy works.

(Hint: Think about taking different numbers of coins from each of the stacks and placing

them on the balance together. Think about the important numbers in the binary number

system.)

We would like to take a different number of coins from each stack so that we know

which stacks have the counterfeit coins. If the question had just 1 counterfeit coin pile,

then we could just take 1 from the first, 2 from the second, 3 from the third and so on.

Note: if there were no counferfeit coins, the total weight taking one from the first pile

and 2 from the second and so on would be (7)(7+1)
2

= 28.

However we cannot do that this time, because we wouldn’t be able to know for sure

which piles had the counterfeit coins.

For example if the total weight was 33, then there could be 2 possibilities including

the 1st and 4th or 2nd and 3rd. But we want to avoid these ambiguous situations.

To do this, we basically want to write a 7-digit binary number with two 1’s.

From the 1st stack, we take 20 = 1.

From the 2nd stack, we take 21 = 2.

From the 3rd stack, we take 22 = 4 and so on until you take 26 = 64.

Then when you weigh them, and convert this number in decimal form to binary form,

and from the position of the two 1’s you can easily determine which piles contains the

counterfeit coins.
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