1) **Exercise 1**
In the diagram, \(\angle ABC = \angle AED \), \(AD = 3 \), \(DB = 2 \) and \(AE = 2 \). Determine the length of \(EC \).

![Diagram of triangle ABC with points A, B, C, D, and E labeled.]

Solution:

First, we show that \(\triangle AED \) and \(\triangle ABC \) are similar. Since \(\angle DAE = \angle BAC \) and \(\angle ABC = \angle AED \), we have that \(\triangle AED \) is similar to \(\triangle ABC \). Thus, \(\frac{DA}{AE} = \frac{CA}{AB} \). By cross multiplying,

\[
CA = \frac{DA \cdot AB}{AE} = \frac{3}{2} \cdot (3 + 2) = \frac{15}{2}.
\]

Hence, \(EC = CA - AE = \frac{15}{2} - 2 = \frac{11}{2} \).
2) In triangle ABC, D is a point on BC. Further, $AB = 35$, $BD = 11$ and $AD = AC = 31$. Determine the length of DC.

Solution: Construct the Perpendicular as shown

![Diagram showing triangle ABC with point D on BC, and perpendicular from A to BC]

Now, by the Pythagorean Theorem on $\triangle ABE$, we see that

$$ (AB)^2 = (BE)^2 + (AE)^2 $$

$$ 35^2 = (11 + DE)^2 + (AE)^2 $$

$$ 35^2 = 11^2 + 22 \cdot DE + (DE)^2 + (AE)^2 $$

Now, by the Pythagorean Theorem on $\triangle ADE$, we see that

$$ (AD)^2 = (DE)^2 + (AE)^2 $$

$$ 31^2 = (DE)^2 + (AE)^2 $$

Subtracting these two equations gives

$$ 35^2 - 31^2 = 11^2 + 22 \cdot DE $$

Either using a calculator or factoring as follows, we see that

$$ 35^2 - 31^2 = 11^2 + 22 \cdot DE $$

$$ (35 - 31)(35 + 31) = 11(11 + 2 \cdot DE) $$

$$ (4)(66) = 11(11 + 2 \cdot DE) $$

$$ (4)(6) = 11 + 2 \cdot DE $$

$$ 24 - 11 = 2 \cdot DE $$

$$ 13 = DC $$

Since $2DE = DC$
3) In triangle ABC, $AC = AB = 25$ and $BC = 40$. Point D is a point chosen on BC. From D, perpendicualrs are drawn to meet AC at E and AB at F. Determine the value of $DE + DF$.

Solution: As shown in the diagram, draw the perpendicular bisector of CB which intersects A and M, the midpoint of BC. Also connect A and D.

Thus, $MC = 20$ and hence by the Pythagorean Theorem,

$$(AC)^2 = (CM)^2 + (AM)^2$$

$$25^2 - 20^2 = (AM)^2$$

$$(25 - 20)(25 + 20) = (AM)^2$$

$$5 \cdot 45 = (AM)^2$$

$$5^2 \cdot 9^2 = (AM)^2$$

$$15 = AM$$

Hence, the area of $\triangle ABC$ is $\frac{AM \cdot BC}{2} = 300$. Now, denoting area by absolute values, we see that

$$300 = |\triangle ABC| = |\triangle ADC| + |\triangle ADB|$$

$$300 = \frac{AC \cdot ED}{2} + \frac{AB \cdot FD}{2}$$

$$300 = \frac{25 \cdot ED}{2} + \frac{25 \cdot FD}{2}$$

$$600 = 25(ED + FD)$$

$$24 = ED + FD$$
4) Triangle ABC is an isosceles triangle in which $AB = AC = 10$ and $BC = 12$. The points S and R are on BC such that $BS : SR : RB = 1 : 2 : 1$. The midpoints of AB and AC are P and Q respectively. Perpendiculars are drawn from P and R to meet SQ at M and N respectively. What is the length of MN?

Solution: From the problem statement, P and Q are midpoints hence $AP = PB = AQ = AC = 5$. Let X be the midpoint of BC. Since the triangle ABC is isosceles, we see that AM is the perpendicular bisector of BC. Similarly, AY is the perpendicular bisector for $\triangle APQ$. Since the sides are in a $1:2:1$ ratio, we see that $BS = SX = XR = RC = 3$.

First, we claim that $QR \perp BC$. Draw the triangle below as follows.

Then $\triangle AQY$ is similar to $\triangle ACM$ (They share $\angle CAX = \angle QAY$ and both have a right angle). Hence

$$\frac{AQ}{AY} = \frac{AC}{XC} \quad \text{implying} \quad \frac{5}{AY} = \frac{10}{8}$$

Hence $AY = 4$. Similarly, $AQ = 3$. By the Pythagorean Theorem in $\triangle AMC$, we see that

$$(AC)^2 = (AX)^2 + (MC)^2$$

$$(10)^2 = (AX)^2 + 6^2$$

$$100 - 36 = (AX)^2$$

$$8 = AX$$
Hence, $XY = 4$ and by the Pythagorean Theorem again, we see that $QX = 5$. Hence, $\triangle QMC$ is isosceles and thus, QR must be perpendicular since it is the bisector of CX.

Now, we can argue as above to show that PS is perpendicular to BC. By the Pythagorean Theorem on $\triangle QRC$, we see that

\[(QC)^2 = (QR)^2 + (RC)^2\]
\[(5)^2 = (QR)^2 + 3^2\]
\[25 - 9 = (QR)^2\]
\[4 = QR\]

and similarly, $PS = 4$. Now, as PS and QR are parallel, we see that $\angle PSM = \angle SQR$. Hence $\triangle PSM$ is congruent to $\triangle RQN$ (angles are equal and they share a side length size). Thus $SM = NQ$. Since $\angle QRS$ is a right angle, we see that $\angle SRN = \angle NQR$. Further, $\angle RSN = \angle QRN$. Hence $\triangle RNQ$ which is similar to $\triangle SRQ$. This gives

\[
\frac{QN}{QS} = \frac{QR}{QS}
\]

Thus, $QN \cdot QS = 16$. Now, by Pythagorean Theorem again on $\triangle QRS$, we see that

\[(QS)^2 = (QR)^2 + (SR)^2\]
\[(QS)^2 = 4^2 + 6^2\]
\[(QS)^2 = 16 + 36\]
\[QS = \sqrt{52}\]
\[QS = 2\sqrt{13}\]

Thus, $QN = \frac{16}{2\sqrt{13}} = \frac{8}{\sqrt{13}}$. Now, $QS = SM + MN + NQ = 2QN + MN$ and so

\[MN = QS - 2QN = 2\sqrt{13} - 2 \cdot \frac{8}{\sqrt{13}} = \frac{26 - 16}{\sqrt{13}} = \frac{10}{\sqrt{13}}\]

completing the problem.
5) The lengths of the diagonals AD and BC in rhombus $ABCD$ are 6 and 8 respectively. Triangle AXY is equilateral and line XY is parallel to diagonal BC. Determine the length of the altitude of triangle AXY.

Solution: Construct the picture as shown:

Our goal is to find the length of AF. Lines AC and BD are the diagonals. Since the diagonals of a rhombus bisect each other, we see that $EC = AE = 6/2 = 3$ and $DE = BE = 8/2 = 4$. Note also that diagonals of a rhombus meet at right angles. Now, since DB and XY are parallel, $\angle AFY = \angle AEB = 90^\circ$. Thus, since $\angle FYA = 60^\circ$, we see that $\angle YAF = 30^\circ$. Thus, $\triangle YAF$ is a magic triangle and so

$$\frac{AF}{FY} = \frac{\sqrt{3}}{1}$$

Giving $AF = \sqrt{3} \cdot FY$ and so $AF = 3 + EF = \sqrt{3} \cdot FY$. Next, we note that $\triangle CEB$ and $\triangle CFY$ are similar since they share $\angle YCF = \angle BCE$ and $\angle CEB = \angle CFY$. Thus, by similar triangles, we see that

$$\frac{FC}{FY} = \frac{CE}{BE} = \frac{3}{4}.$$

Hence $4FC = 3FY$. Now, $FC = 3 - EF$ and thus, $12 - 4EF = 3FY$. Solving for FY by substituting $EF = \sqrt{3} \cdot FY - 3$ gives

$$12 - 4(\sqrt{3} \cdot FY - 3) = 3FY$$
$$12 - 4\sqrt{3} \cdot FY + 12 = 3FY$$
$$24 = 3FY + 4\sqrt{3}FY$$
$$24 = (3 + 4\sqrt{3})FY$$
$$\frac{24}{3 + 4\sqrt{3}} = FY$$

Thus, $AF = \sqrt{3} \cdot FY = \frac{24\sqrt{3}}{3 + 4\sqrt{3}}$ completing the question.
6) In the diagram, $ABCD$ is a rhombus with K the midpoint of DC and L the midpoint of BC. Segments DL and BK intersect at M. Determine the fraction of the area of quadrilateral $KMLC$ is of the area of the rhombus $ABCD$.

Solution: Denote areas by absolute values. Join the diagonal DB and points MC as is done in the following diagram

Now, Since K is the midpoint of DC, we see that $|\Delta MDK| = |\Delta MKC|$. Similarly, $|\Delta MLC| = |\Delta MLB|$. Looking at ΔDBC, we see that $\Delta BDK = |\Delta BKC|$. Hence, we have that

$$|\Delta BDM| + |\Delta MDK| = |KMLC| + |\Delta BML|$$

Similarly with ΔDBL and ΔDLC, we see that

$$|\Delta BDM| + |\Delta BML| = |KMLC| + |\Delta MDK|$$

Subtracting these two gives

$$|\Delta MDK| - |\Delta BML| = |\Delta BML| - |\Delta MDK|$$

Which gives that $2|\Delta BML| = 2|\Delta MDK|$ and hence $|\Delta BML| = |\Delta MDK|$. This gives us that

$$|KMLC| = |\Delta MKC| + |\Delta MLC| = |\Delta MDK| + |\Delta BML| = 2|\Delta MDK|$$

Thus, in the above, we see that $\Delta BDM = |KMLC| = 2|\Delta MDK|$. Since ΔDBC is half the rhombus, we see that

$$|ABCD|/2 = |\Delta DBC| = |\Delta BDM| + |KMLC| + |\Delta MDK| + |\Delta BLM|$$

$$= 6|\Delta MDK|$$

$$= 3|KMLC|$$

and hence $KMLC$ is one sixth of the area of the rhombus.
7) Exercise 3:

In triangle ABC, point D is on AB such that AD is twice as long as DB and E is a point on BC such that BE is twice as long as BC. If the area of triangle ABC is 90 units squared, what is the area of triangle ADE in units squared?

Solution: From the problem statement, we see that $BE = 2BC$. Note that $\triangle ABE$ and $\triangle AEC$ have the same heights and so their areas are in proportion with their bases. Thus, denoting area by absolute values, $|\triangle ABE| = 2|\triangle AEC|$. The problem also tells us that (suppressing units throughout)

$$90 = |\triangle ABC| = |\triangle ABE| + |\triangle AEC| = 3|\triangle AEC|$$

and hence $|\triangle AEC| = 30$. Also from the problem statement, we see that $AD = 2DB$. Note that $\triangle AED$ and $\triangle DEB$ have the same heights and so their areas are in proportion with their bases. Thus, denoting area by absolute values, $|\triangle AED| = 2|\triangle DEB|$. Since

$$60 = 2|\triangle AEC| = |\triangle ABE| = |\triangle AED| + |\triangle DEB| = 3|\triangle DEB|$$

we see that $|\triangle DEB| = 20$ and hence $|\triangle AED| = 2|\triangle DEB| = 40$.

8) **Exercise 2**
Square $ABCD$ has an area of 4. The point E is the midpoint of AB. Similarly, F, G, H and I are the midpoints of DE, CF, DG and CH respectively. What is the area of triangle IDC?

![Diagram](image)

Solution: As usual, denote area by absolute values. Connect EC to form an isosceles triangle DEC. Now, since F is the midpoint of DE, we see that $|\triangle DFC| = 0.5|\triangle DEC|$ since the median cuts the area in half. Similarly, $|\triangle DGC| = 0.5|\triangle DFC|$, $|\triangle DHC| = 0.5|\triangle DGC|$, $|\triangle DIC| = 0.5|\triangle DHC|$. Combining this gives $|\triangle DIC| = (0.5)^4|\triangle DEC| = \frac{1}{16}\cdot |\triangle DEC|$. Since the height of $\triangle DEC$ is 2 and the base is 2, it’s area is 2 and hence $|\triangle DIC| = \frac{2}{16} = \frac{1}{8}$.
9) In the diagram, $AB = AC = 12\text{cm}$ and $AE = AD = 8\text{cm}$. The area of quadrilateral $AEFD$ is 8cm^2. What is the area of triangle ABC in square centimetres?

Solution: We suppress units until the end of this argument. Construct segment AF as shown.

Now, $\triangle AEF$ and $\triangle EFB$ have the same height and their bases are in a $2:1$ proportion with each other. Further, AF cuts the area of quadrilateral $AEFD$ in half by symmetry so $\triangle AEF$ has area 4. Hence, the area of $\triangle EFB$ is half the area of $\triangle AEF$ which gives the area of $\triangle EFB$ to be 2. By symmetry, $\triangle DFC$ also has area 2. Lastly, using $\triangle AEC$ which has area $8 + 2 = 10$ (adding the area of quadrilateral to the triangle DFC) and using $\triangle ECB$ which has area $2 + |\triangle FCB|$ (here the absolute value signs denote area), we see that since the heights of these triangles are the same and the side lengths are in a $2:1$ ration with each other, we have that $2 + |\triangle FCB| = \frac{10}{2}$ and thus $|\triangle FCB| = 3$. Adding the three triangle areas and the quadrilateral area gives $8 + 2 + 2 + 3 = 15$ square centimetres as the area.
10) The diagram shows a square $ABCD$ with unit length. Triangle ADE is equilateral. The diagonal AC of square $ABCD$ intersects line segment DE at the point F. What is the area of triangle AFD?

Solution: Begin by constructing the following line segments on the diagram

Our goal is to find $|\triangle FDC|$, the area of $\triangle FDC$. This is given by $|\triangle FDC| = \frac{1}{2}FH \cdot DC = \frac{FH}{2}$. Now, $FGDH$ is a rectangle and hence $GD = FH$. Since AC is a diagonal of a square, $\angle HCF = 45^\circ$. Since $\triangle FHC$ is a magic triangle, we see that $GD = FH = HC$. Thus, $DH = DC - HC = 1 - GD$. Since $FGDH$ is a rectangle, once again we have that $FG = DH = 1 - GD$. Since $\triangle FGD$ is a $30^\circ : 60^\circ : 90^\circ$ triangle, we see that

$$\frac{GD}{FG} = \frac{1}{\sqrt{3}}$$

$$\frac{GD}{1 - GD} = \frac{1}{\sqrt{3}}$$

$$\sqrt{3} \cdot GD = 1 - GD$$

$$(\sqrt{3} + 1)GD = 1$$

Solving gives $GD = \frac{1}{\sqrt{3} + 1}$ or $GD = \frac{\sqrt{3} - 1}{2}$. Since $GD = FH$, we see that $|\triangle FDC| = \frac{FH}{2} = \frac{\sqrt{3} - 1}{4}$ completing the question.
11) Below, F is the midpoint of AE, $AE = \frac{1}{2}ED$, $AB = 9$ and $BC = 3$. If the area of quadrilateral $BEDC$ is 72, then what is the area of triangle BFE?

Solution: Join BD. Denoting area by absolute values, we see that $|\triangle BFE| = |\triangle ABF|$ since the triangles have the same base and height. Since $DE = 2AE$, we see that

$$|\triangle BED| = 2|\triangle BAE| = 2(|\triangle BFE| + |\triangle ABF|) = 2(|\triangle BFE| + |\triangle BFE|) = 4|\triangle BFE|$$

Now, since $AB : BC$ is $3 : 1$, we see that $|\triangle ABD| = 3|\triangle BCD|$. Since

$$|\triangle ABD| = |\triangle BFE| + |\triangle ABF| + |\triangle BED| = |\triangle BFE| + |\triangle BFE| + 4|\triangle BFE| = 6|\triangle BFE|$$

Combining gives $|\triangle BCD| = 2|\triangle BFE|$. Thus,

$$72 = |BEDC| = |\triangle BED| + |\triangle BCD| = 4|\triangle BFE| + 2|\triangle BFE| = 6|\triangle BFE|$$

Hence, $|\triangle BFE| = 12$.
12) In the diagram, triangle ABC is equilateral with sides of length 2. Line segments CD and EB are medians and $FGHI$ is a square. Determine the ratio of the area of square $FGHI$ to triangle ABC.

Solution: Draw the altitude AM which is also the perpendicular bisector of BC. Let $MG = FG = n$ so that the square has side length $2n$.

From the problem statement, we know that $MC = BC/2 = 1$. Hence $GC = 1 - n$. Now, triangle HGC is a magic triangle since the angles are $30^\circ : 60^\circ : 90^\circ$. Hence, we see that

\[
\frac{2n}{1-n} = \frac{HG}{GC} = \frac{1}{\sqrt{3}}
\]

This gives $2\sqrt{3}n = 1 - n$ and so $n = \frac{1}{2\sqrt{3}+1}$. Hence, the area of the square $FGHI$ is

\[
4n^2 = \frac{4}{13+4\sqrt{3}}.
\]

The area of the triangle ABC is $\frac{1}{2} \cdot AM \cdot BC = \frac{1}{2} \cdot \sqrt{3} \cdot 2 = \sqrt{3}$ (note that $\triangle ABM$ is another magic triangle) and thus, the ratio of the area of this square to triangle ABC is

\[
\frac{4}{\sqrt{3}} \cdot \frac{1}{12 + 13\sqrt{3}}.
\]