Jmc 1977 #22

Solution.
The diagram represents a cross section of the tank. The distance AB is twice
\[BD = 2\sqrt{2^2 - 1^2} = 2\sqrt{3}. \]
Surface area = area of a rectangle of dimensions 16 and \(2\sqrt{3}\), that is, \(32\sqrt{3}\).

The answer is (A).

Jmc 1981 #24

Solution
In 90! there are 45 factors which are multiples of 2. Of these 22 are multiples of 4, 11 are multiples of 8, 5 are multiples of 16, 2 are multiples of 32, and 1 is a multiple of 64. Then the exponent of the highest power of 2 is
\[45 + 22 + 11 + 5 + 2 + 1 = 86. \] (A)

Jmc 1976 #18

Solution 1.
The line has equation
\[\frac{x}{a} + \frac{y}{b} = 1. \]
Since (2, 1) lies on the line,
\[\frac{2}{a} + \frac{1}{b} = 1, \]
that is,
\[2b + a = ab, \]
\[2b = ab - a, \]
\[2b = a(b - 1). \]
The answer is A.

Solution 2.
Slope \(AC = \frac{1 - 0}{2 - a}\); slope \(BC = \frac{1 - b}{2 - 0}\).
Equating slopes, we obtain
\[\frac{1}{2 - a} = \frac{1 - b}{2}, \]
\[2 = 2a - 2b + ab, \]
\[2b = a(b - 1). \]
The answer is A.
Solution 1.

Let DC = x, and use the theorem on intersecting chords.

BC = CA = CG = EF = 9 + x

= radius of larger circle.

From the small circle,

\[DC \cdot CA = EC \cdot CH. \]

\[x(9 + x) = (9 + x - 5)^2 \]

\[9x + x^2 = (4 + x)^2 = x^2 + 8x + 16 \]

By transposition, \(x = 16 \).

Hence the required diameter

\[= DC + CA \]

\[= 16 + (9 + 16) = 41. \]

The answer is (C).

Solution 2.

Let O be the centre of the smaller circle. Designate the radii of the larger and smaller circles by R and r respectively.

\[\therefore 2R = 2r + 9 \]

Hence \(R = r + \frac{9}{2} \).

Now CE = R - 5

\[= r + \frac{9}{2} - 5 \]

\[= r - \frac{1}{2} \]

and OC = R - r

\[= r + \frac{9}{2} - r \]

\[= \frac{9}{2} \]

In the right triangle ECO,

\[EO^2 = CE^2 + OC^2 \]

\[r^2 = (r - \frac{1}{2})^2 + (\frac{9}{2})^2 \]

\[= r^2 - r + \frac{1}{4} + \frac{81}{4} \]

\[\therefore r = \frac{41}{2} \]

Hence the required diameter is \(2r = 41 \).

The answer is (C).
Let the x and y intercepts of the line be a and b respectively.

Then slope $AP = \text{slope } AB$

\[
\frac{6}{-2 - a} = \frac{b}{-a}
\]

\[b = \frac{6a}{a + 2}
\]

Since the area of $\triangle AOB$ is 25,

then \[\frac{1}{2} \cdot a \cdot b = 25.
\]

\[a \left(\frac{6a}{a + 2}\right) = 50
\]

\[6a^2 + 50a + 100
\]

\[3a^2 - 25a - 5 = 0
\]

\[(3a + 5)(a - 10) = 0
\]

\[a = \frac{5}{3} \text{ or } 10.
\]

The correct answer is (C).

JMC 1975 #26

Solution 1.

\[
\frac{x - 18}{x^2 - x - 6} = \frac{P}{x + 2} + \frac{Q}{x - 3}
\]

\[
= \frac{P(x - 3) + Q(x + 2)}{x^2 - x - 6}
\]

\[
= \frac{(P + Q)x + (2Q - 3P)}{x^2 - x - 6}
\]

Since this is an identity,

\[x - 18 = (P + Q)x + (2Q - 3P).
\]

Hence \[2Q - 3P = -18,
\]

\[Q + P = 1.
\]

Solving, we get \[P = 4, \ Q = -3.
\]

Hence \[P - Q = 4 - (-3) = 7.
\]

Solution 2. As in Solution 1,

\[x - 18 = P(x - 3) + Q(x + 2)
\]

Since this identity holds for all x, it holds for $x = 3$.

Thus \[-15 = 5Q, \ Q = -3.
\]

Also, the identity holds for $x = -2$;

hence \[-20 = -5P, \ P = 4.
\]

As before, \[P - Q = 7.
\]

PASCAL 1982 #25

List the integers as follows:

\[
\begin{align*}
000000 & \\
000001 & \\
000002 & \\
\vdots & \\
999998 & \\
999999 & \\
\end{align*}
\]

There are 6000000 digits in this list and the digits 0, 1, 2, ..., 9 each appear an equal number of times. So
There are 5 \((4) (3) = 60 \) possible numbers.
By symmetry, each digit must appear \(\frac{60}{5} = 12 \) times
in each of the first, second, and third positions.
So the digits in each position add to 12 \((2 + 3 + 4 + 5 + 6) = 240\)
Units digits give 240.
Tens digits give 2400.
Thousands digits give 24000.
Total sum is 26,640.
The answer is D.

Note: The 60 numbers are
234 245 345 456
235 246 346
236 256 356
and all rearrangements of these (234 gives itself,
243, 342, 324, 432, and 423).

JMC 1976 #23

Solution 1.

Since \(29^2 = 21^2 + 20^2 \),
we find that \(\triangle \) is a right angle.
Let \(BF = BD = x \),
\(DC = CE = r \), \(FA = EA = y \). (tangents from external points are equal)
Then \(r + x = 20 \), \(r + y = 21 \), \(x + y = 29 \).
Thus \(2r + x + y = 41 \), \(2r = 12 \), \(r = 6 \) (and \(2r = 12 \)).
The answer is A.

Solution 2.

\[\triangle BCA = \triangle BOC + \triangle OCA + \triangle OAB. \]
\[\frac{1}{2} (20) (21) = \frac{1}{2} r (20) + \frac{1}{2} r (21) + \frac{1}{2} r (29). \]
\[420 = r (70), \ r = 6 \text{ (and } 2r = 12). \]
The answer is A.
(Note that one could get \(\triangle BCA \) by Heron's formula without even noting that it is right-angled.)
Let \(1 + k = 3a \), \(1 + 2k = 5b \), and \(1 + 8k = 7c \) where \(a, b, c \) are integers.

\[a = \frac{k+1}{3} \quad \Rightarrow \quad k = 2, 5, 8, 11, \ldots, 59, 62, 65, \ldots \]

\[b = \frac{2k+1}{5} \quad \Rightarrow \quad k = 2, 7, 12, 17, \ldots, 57, 62, 67, \ldots \]

\[c = \frac{8k+1}{7} \quad \Rightarrow \quad k = 6, 13, 20, 27, \ldots, 55, 62, 69, \ldots \]

The smallest value of \(k \) satisfying all three conditions is 62.

\[\text{(D)} \]

\[\text{JMC 1979 \#27} \]

\[\frac{1}{(2)(3)} = \frac{1}{2} - \frac{1}{3} \]

\[\frac{1}{(3)(4)} = \frac{1}{3} - \frac{1}{4} \]

\[\frac{1}{(61)(62)} = \frac{1}{61} - \frac{1}{62} \]

Add to obtain \(\frac{1}{2} - \frac{1}{62} = \frac{31}{62} - \frac{1}{62} = \frac{30}{62} = \frac{15}{31} \).

Thus \(a = 15 \), \(b = 31 \), \(a + b = 46 \).

The answer is \(\text{(D)} \).