Math Circles: Diophantine Equations II
(Geometric interpretation of linear Diophantine equations)

Carrie Knoll
Centre for Education in Mathematics and Computing
Faculty of Mathematics
University of Waterloo
Waterloo, Canada
www.cemc.uwaterloo.ca

Mar 5, 2014
Consider the following linear Diophantine equations:

1. $6x + 4y = 5$

2. $6x + 4y = 2$
Consider the following linear Diophantine equations:

1. $6x + 4y = 5$

 Since $\gcd(6, 4) = 2$, and 2 does not divide 5, this equation does not have an integer solution.

2. $6x + 4y = 2$
Consider the following linear Diophantine equations:

1. \[6x + 4y = 5 \]

Since \(\gcd(6, 4) = 2 \), and 2 * does not divide * 5, this equation does not have an integer solution.

2. \[6x + 4y = 2 \]

Since \(\gcd(6, 4) = 2 \), and 2 * does divide * 2, this equation does have an integer solution. We can find one by inspection: \(x = 1, y = -1 \). In fact, there are infinitely many integer solutions.

Let’s examine these two situations geometrically...
The equation $6x + 4y = 5$

Notice that this is the equation of a line. We can rearrange the equation to get:

$$
6x + 4y = 5 \\
4y = -6x + 5 \\
y = -\frac{3}{2}x + \frac{5}{4}
$$

Since this is a line, there are infinitely many pairs of numbers x and y that satisfy $y = -\frac{3}{2}x + \frac{5}{4}$, but we know that there are no integer pairs, because the equation $6x + 4y = 5$ has no integer solutions.

On a graph...
The equation $6x + 4y = 5$

Lattice points are points in the plane with integer x and y coordinates.

These will correspond to integer solutions of our linear Diophantine equation.

The line misses all the lattice points shown in this graph.
The equation $6x + 4y = 5$

The line misses all lattice points.

The equation has no integer solutions.
The equation $6x + 4y = 2$

Again, this is the equation of a line. We can rearrange the equation to get:

\[
6x + 4y = 2 \\
4y = -6x + 2 \\
y = -\frac{6}{4}x + \frac{2}{4} \\
y = \frac{3}{2}x + \frac{1}{2}
\]

This second line has the same slope as the first line, but with a different y intercept.

Since this is a line, there are infinitely many pairs of numbers x and y that satisfy $y = -\frac{3}{2}x + \frac{1}{2}$. Let’s convince ourselves with a picture that there are also infinitely many integer solutions.
The equation $6x + 4y = 2$

$y = -\frac{3}{2}x + \frac{1}{2}$

The line hits many lattice points on this graph.

$(-3, 5)$

$(-1, 2)$

$(1, -1)$

$(3, -4)$
The equation $6x + 4y = 2$

The line hits many lattice points on this graph.

$(-3, 5)$

$(-1, 2)$

$(1, -1)$

$(3, -4)$
The equation $6x + 4y = 2$.

If we pick one lattice point, then we can find its “neighbouring lattice points” as follows.
The equation $6x + 4y = 2$

If we pick one lattice point, then we can find its “neighbouring lattice points” as follows.

$$(1 - 2, -1 + 3) = (-1, 2)$$

$$\uparrow$$

$$(1, -1)$$

$$\downarrow$$

$$(1 + 2, -1 - 3) = (3, -4)$$
Given one solution \(x_0, y_0 \) to an equation \(ax + by = c \), how do we find its “neighbouring solutions”?

Assuming that \(a, b \neq 0 \), let’s rearrange this equation as follows:

\[
\begin{align*}
ax + by &= c \\
by &= -ax + c \\
y &= -\frac{a}{b}x + \frac{c}{b}
\end{align*}
\]

giving us a slope of \(m = -\frac{a}{b} \).

So we might be tempted so say “move \(a \) units up and \(b \) units to the left” or “move \(b \) units to the right and \(a \) units down”.

This will indeed find us another solution, but which one?
Back to our example

Let’s return to the example $6x + 4y = 2$. Then we have

$$y = -\frac{3}{2}x + \frac{1}{2}$$

with $a = 6$ and $b = 4$.
Back to our example

Let’s return to the example $6x + 4y = 2$. Then we have

$$y = -\frac{3}{2}x + \frac{1}{2}$$

with $a = 6$ and $b = 4$.

If we simply move $a = 6$ units up and $b = 4$ units to the left then we may miss lattice points!
Neighbouring solutions

\[ax + by = c \implies y = -\frac{a}{b}x + \frac{c}{b} \]

While \(-\frac{a}{b}\) is the slope of the line, in order to use this fraction to find ALL lattice points, we need to make sure that we consider the fraction \(\frac{a}{b}\) in lowest terms.

The fraction \(\frac{a}{b}\) in lowest terms = \(\frac{a}{\gcd(a, b)}\) \(\frac{b}{\gcd(a, b)}\)

To find the “neighbouring solutions”:

- Move right \(\frac{b}{\gcd(a, b)}\) units, and down \(\frac{a}{\gcd(a, b)}\) units, or
- Move up \(\frac{a}{\gcd(a, b)}\) units, and left \(\frac{b}{\gcd(a, b)}\) units.
Example

Given that $x_0 = 1$, $y_0 = -1$ is one solution to the equation $6x + 4y = 2$, find the two “neighbouring” integer solutions.

Solution: Using the method from the previous slide:

First we find $\frac{a}{\gcd(a, b)} = \frac{6}{2} = 3$ and $\frac{b}{\gcd(a, b)} = \frac{4}{2} = 2$.

To find the “neighbouring” solutions we do the following:

- $x = x_0 + \frac{b}{\gcd(a, b)} = 1 + 2 = 3$ “right 2 units”

- $y = y_0 - \frac{a}{\gcd(a, b)} = -1 - 3 = -4$ “down 3 units”

- $x = x_0 - \frac{b}{\gcd(a, b)} = 1 - 2 = -1$ “left 2 units”

- $y = y_0 + \frac{a}{\gcd(a, b)} = -1 + 3 = 2$ “up 3 units”
Given one solution $x_0 = 1$, $y_0 = -1$, the "next lattice points" are:

$(1 - 2, -1 + 3) = (-1, 2)$

$(1 + 2, -1 - 3) = (3, -4)$
Example

Given that $x_0 = 9$, $y_0 = -20$ is one integer solution to the equation $483x + 217y = 7$, find the two “neighbouring” integer solutions.

Solution: We have $a = 483$ and $b = 217$ and $\gcd(483, 217) = 7$ from earlier calculations.

$$\frac{a}{\gcd(a, b)} = \frac{483}{7} = 69 \quad \text{and} \quad \frac{b}{\gcd(a, b)} = \frac{217}{7} = 31.$$

To find the “neighbouring” solutions we do the following:

- $x = x_0 + \frac{b}{\gcd(a, b)} = 9 + 31 = 40$ “right 31 units”
- $y = y_0 - \frac{a}{\gcd(a, b)} = -20 - 69 = -89$ “down 69 units”
- $x = x_0 - \frac{b}{\gcd(a, b)} = 9 - 31 = -22$ “left 31 units”
- $y = y_0 + \frac{a}{\gcd(a, b)} = -20 + 69 = 49$ “up 69 units”

Check! $483(40) + 217(-89) = 7$ and $483(-22) + 217(49) = 7$.
Finding all solutions

Suppose that \(x_0, y_0 \) is one integer solution to the linear Diophantine equation \(ax + by = c \), and let \(d = \gcd(a, b) \). Then the full set of integer solutions for the equation is given by

\[
x = x_0 + n \left(\frac{b}{d} \right), \quad y = y_0 - n \left(\frac{a}{d} \right)
\]

where \(n \) is any integer.

Note that \(n = 1 \) corresponds to a “neighbour” of \(x_0, y_0 \):

\[
x = x_0 + 1 \left(\frac{b}{d} \right) \quad y = y_0 - 1 \left(\frac{a}{d} \right)
\]
\[
= x_0 + \frac{b}{d} \quad = y_0 - \frac{a}{d}
\]

Also \(n = -1 \) corresponds to the other “neighbour” of \(x_0, y_0 \):

\[
x = x_0 + (-1) \left(\frac{b}{d} \right) \quad y = y_0 - (-1) \left(\frac{a}{d} \right)
\]
\[
= x_0 - \frac{b}{d} \quad = y_0 + \frac{a}{d}
\]
Find ALL integer solutions to the equation $6x + 4y = 2$.

Solution:
We know that $a = 6$, $b = 4$ and $\gcd(a, b) = \gcd(6, 4) = 2 = d$. Since $x_0 = 1$, $y_0 = -1$ is one solution to the given equation, the full set of integer solutions is given by

$$
x = x_0 + n \left(\frac{b}{d} \right) \quad y = y_0 - n \left(\frac{a}{d} \right)
$$

$$
= 1 + n \left(\frac{4}{2} \right) \quad = -1 - n \left(\frac{6}{2} \right)
$$

$$
= 1 + 2n \quad = -1 - 3n
$$

1. Every integer n produces a particular solution $x = 1 + 2n$, $y = -1 - 3n$ to the equation, and
2. Every integer solution to the equation is of the form $x = 1 + 2n, y = -1 - 3n$ for some integer n.
General solution \(x = 1 + 2n, \ y = -1 - 3n \)

\[
y = -\frac{3}{2}x + \frac{1}{2}
\]

\(n = -3 \)

\(n = -2 \)

\(n = -1 \)

\(n = 0 \) (original solution)

\(n = 1 \)

\(n = 2 \)

\(n = 3 \)