1. What is Cryptography?
2. A bit on Modular Arithmetic
3. Let’s do some encryption and decryption!
4. Let’s break a cipher!
What is Cryptography?

Cryptography = the study of sending messages in secret form
What is Cryptography?

Cryptography = the study of sending messages in secret form
Cryptanalysis = the study of breaking cryptographic messages
What is Cryptography?

Cryptography = the study of sending messages in secret form

Cryptanalysis = the study of breaking cryptographic messages

Cryptology = the above two things together.
What is Cryptography?

Cryptography = the study of sending messages in secret form
Cryptanalysis = the study of breaking cryptographic messages
Cryptology = the above two things together.

The need for secret communications has been known for centuries:

- Scytale (a Transposition Cipher) dates to 5th century BC, used by Spartan military
- Caesar's Shift Cipher was used by Julius Caesar in 50 B.C. to communicate with his military
What is Cryptography?

Cryptography = the study of sending messages in secret form
Cryptanalysis = the study of breaking cryptographic messages
Cryptology = the above two things together.

The need for secret communications has been known for centuries:

- **Scytale** (a Transposition Cipher) dates to 5th century BC, used by Spartan military
What is Cryptography?

Cryptography = the study of sending messages in secret form

Cryptanalysis = the study of breaking cryptographic messages

Cryptology = the above two things together.

The need for secret communications has been known for centuries:

- **Scytale** (a *Transposition Cipher*) dates to 5th century BC, used by Spartan military

- **Caesar’s Shift Cipher** was used by Julius Caesar in 50 B.C. to communicate with his military
What is Cryptography?

Just as there is a need for being able to send secret messages, there is also a need to read secret messages.
What is Cryptography?

Just as there is a need for being able to send secret messages, there is also a need to read secret messages.

In the 20th century, cryptography played a significant role in many global conflicts (e.g. Enigma machine and Bletchley Park in WWII).
What is Cryptography?

There was a historical need for cryptography in military and government areas and there still is, but is it still as necessary in today’s modern world?
What is Cryptography?

There was a historical need for cryptography in military and government areas and there still is, but is it still as necessary in today’s modern world?

The need for secret communication is even larger than it was in the recent past.
What is Cryptography?

There was a historical need for cryptography in military and government areas and there still is, but is it still as necessary in today’s modern world?

The need for secret communication is even larger than it was in the recent past.

Credit card, debit card and web transactions, as well as privacy concerns for the electronic storage of health, citizenship and other records, have raised the need for secure communications and secure storage dramatically.
We have a sender, Alice, and a receiver, Bob.
We have a sender, Alice, and a receiver, Bob. Alice wants to send a message M to Bob, over an insecure channel, but she wants only Bob to be able to read the message.
Setup and Terminology

We have a sender, Alice, and a receiver, Bob. Alice wants to send a message M to Bob, over an insecure channel, but she wants only Bob to be able to read the message. There is a good chance that at least part of the transmitted message will be intercepted by and eavesdropper, Eve.
Setup and Terminology

We have a sender, Alice, and a receiver, Bob. Alice wants to send a message M to Bob, over an insecure channel, but she wants only Bob to be able to read the message. There is a good chance that at least part of the transmitted message will be intercepted by an eavesdropper, Eve.

Alice needs to "encrypt" the message so that Eve cannot read it. Alice wants to use a simple algorithm, so that Bob can "decrypt" the transmitted message using some special key that only he has, but so that it is hard for Eve to "break the code" without knowing the key.
Setup and Terminology

We have a sender, Alice, and a receiver, Bob. Alice wants to send a message M to Bob, over an insecure channel, but she wants only Bob to be able to read the message. There is a good chance that at least part of the transmitted message will be intercepted by and eavesdropper, Eve.

Alice needs to “encrypt” the message so that Eve cannot read it.
Setup and Terminology

We have a sender, Alice, and a receiver, Bob. Alice wants to send a message M to Bob, over an insecure channel, but she wants only Bob to be able to read the message. There is a good chance that at least part of the transmitted message will be intercepted by an eavesdropper, Eve.

Alice needs to “encrypt” the message so that Eve cannot read it. Alice wants to use a simple algorithm, so that Bob can “decrypt” the transmitted message using some special key that only he has, but so that it is hard for Eve to “break the code” without knowing the key.
Setup and Terminology

Plaintext = original message
Ciphertext = encrypted message

Encryption = act of transforming plaintext into ciphertext
Encryption algorithm = method used to turn plaintext into ciphertext. Uses a key, some input into the algorithm.

Decryption = act of transforming ciphertext into plaintext
Decryption algorithm = method used to turn ciphertext into plaintext. Uses a key, some input into the algorithm.

Diagram:

- Alice
 - Message (Plaintext)
 - Encrypt
 - Ciphertext

- Bob
 - Decrypt
 - Message

- Eve
 - Communication channel
Setup and Terminology

- **Plaintext** = original message
- **Ciphertext** = encrypted message
- **Encryption** = act of transforming plaintext into ciphertext
- **Encryption algorithm** = method used to turn plaintext into ciphertext. Uses a key, some input into the algorithm.
- **Decryption** = act of transforming ciphertext into plaintext
- **Decryption algorithm** = method used to turn ciphertext into plaintext. Uses a key, some input into the algorithm.

![Diagram of encryption process](image)
Setup and Terminology

Plaintext = original message
Ciphertext = encrypted message
Setup and Terminology

Plaintext = original message
Ciphertext = encrypted message
Encryption = act of transforming plaintext into ciphertext
Setup and Terminology

Plaintext = original message

Ciphertext = encrypted message

Encryption = act of transforming plaintext into ciphertext

Encryption algorithm = method used to turn plaintext into ciphertext.
Plaintext = original message
Ciphertext = encrypted message
Encryption = act of transforming plaintext into ciphertext
Encryption algorithm = method used to turn plaintext into ciphertext. Uses a key, some input into the algorithm.
Setup and Terminology

Plaintext = original message
Ciphertext = encrypted message
Encryption = act of transforming plaintext into ciphertext
Encryption algorithm = method used to turn plaintext into ciphertext. Uses a **key**, some input into the algorithm.
Decryption = act of transforming ciphertext into plaintext
Setup and Terminology

Plaintext = original message
Ciphertext = encrypted message
Encryption = act of transforming plaintext into ciphertext
Encryption algorithm = method used to turn plaintext into ciphertext. Uses a key, some input into the algorithm.
Decryption = act of transforming ciphertext into plaintext
Decryption algorithm = method used to turn ciphertext into plaintext.
Setup and Terminology

Plaintext = original message
Ciphertext = encrypted message
Encryption = act of transforming plaintext into ciphertext
Encryption algorithm = method used to turn plaintext into ciphertext. Uses a **key**, some input into the algorithm.
Decryption = act of transforming ciphertext into plaintext
Decryption algorithm = method used to turn ciphertext into plaintext. Uses a **key**, some input into the algorithm.
The security of the code should depend on keeping the key a secret, not keeping the encryption algorithm a secret.

Alice should be able to code her message with a well-known method and still be reasonably confident that the message cannot be decoded by anyone other than Bob, since he is the only person with the key.
What is the remainder when 51 is divided by 7?

Answer: 2

We write $51 \equiv 2 \pmod{7}$ and say “51 is congruent to 2 modulo 7.” This means that 51 and 2 have the same remainder when divided by 7. In other words, $51 - 2 = 49$ is a multiple of 7.

In general, if a, b, and m are integers, $a \equiv b \pmod{m}$, “a is congruent to b modulo m” means that a and b differ by a multiple of m, or $a - b = km$, where k is some integer.
What is the remainder when 51 is divided by 7? Answer: 2
First Some Modular Arithmetic

What is the remainder when 51 is divided by 7? Answer: 2

We write $51 \equiv 2 \mod 7$ and say “51 is congruent to 2 modulo 7”
First Some Modular Arithmetic

What is the remainder when 51 is divided by 7? Answer: 2

We write $51 \equiv 2 \mod 7$ and say “51 is congruent to 2 modulo 7”

This means that 51 and 2 have the same remainder when divided by 7.
What is the remainder when 51 is divided by 7? Answer: 2
We write $51 \equiv 2 \mod 7$ and say “51 is congruent to 2 modulo 7”
This means that 51 and 2 have the same remainder when divided by 7.
In other words, 51 and 2 differ by a multiple of 7, or $51 - 2 = 49$ is a multiple of 7.
First Some Modular Arithmetic

What is the remainder when 51 is divided by 7? Answer: 2

We write $51 \equiv 2 \mod 7$ and say “51 is congruent to 2 modulo 7”

This means that 51 and 2 have the same remainder when divided by 7.

In other words, 51 and 2 differ by a multiple of 7, or $51 - 2 = 49$ is a multiple of 7.

In general, if a, b and m are integers,
What is the remainder when 51 is divided by 7? Answer: 2

We write $51 \equiv 2 \pmod{7}$ and say “51 is congruent to 2 modulo 7”

This means that 51 and 2 have the same remainder when divided by 7.

In other words, 51 and 2 differ by a multiple of 7, or $51 - 2 = 49$ is a multiple of 7.

In general, if a, b and m are integers,

$$a \equiv b \pmod{m}, \quad \text{“a is congruent to b modulo m”}$$

means that
First Some Modular Arithmetic

What is the remainder when 51 is divided by 7? Answer: 2

We write $51 \equiv 2 \pmod{7}$ and say “51 is congruent to 2 modulo 7”

This means that 51 and 2 have the same remainder when divided by 7.

In other words, 51 and 2 differ by a multiple of 7, or $51 - 2 = 49$ is a multiple of 7.

In general, if a, b and m are integers,

$$ a \equiv b \pmod{m}, \quad \text{“a is congruent to b modulo m”} $$

means that

a and b differ by a multiple of m, or

$a - b = km$, where k is some integer
What is the remainder when 51 is divided by 7? Answer: 2

We write $51 \equiv 2 \mod 7$ and say “51 is congruent to 2 modulo 7”

This means that 51 and 2 have the same remainder when divided by 7.
In other words, 51 and 2 differ by a multiple of 7, or $51 - 2 = 49$ is a multiple of 7.

In general, if a, b and m are integers,

$$a \equiv b \mod m,$$

“a is congruent to b modulo m”

means that

a and b differ by a multiple of m, or

$a - b = km$, where k is some integer

We will be interested in the smallest integer $b \geq 0$ such that

$a - b = km$, where k is some integer.
Example 1

Reduce

a) $52 \mod 8$

b) $41 \mod 5$

c) $84 \mod 4$

d) $-17 \mod 4$

e) $145672 \mod 13$
First Some Modular Arithmetic

$28 \equiv 4 \pmod{8}$ and $11 \equiv 3 \pmod{8}$.
What happens when we add or subtract?

Reduce $28 + 11$ modulo 8.

$28 + 11 = 39 \equiv 7 \pmod{8}$.

Also notice:

$28 \equiv 4 \pmod{8}$ and $11 \equiv 3 \pmod{8}$ and $3 + 4 = 7 \equiv 7 \pmod{8}$

Reduce $28 - 11$ modulo 8.

$28 - 11 = 17 \equiv 1 \pmod{8}$.

Also notice:

$28 \equiv 4 \pmod{8}$ and $11 \equiv 3 \pmod{8}$ and $4 - 3 = 1 \equiv 1 \pmod{8}$

This is not a coincidence!

In general:

If $a \equiv A \pmod{m}$ and $b \equiv B \pmod{m}$, then

(i) $a + b \equiv A + B \pmod{m}$

(ii) $a - b \equiv A - B \pmod{m}$
First Some Modular Arithmetic

28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).
What happens when we add or subtract?
Reduce 28 + 11 modulo 8.

Reduce 28 + 11 modulo 8.

Also notice:
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8) and 3 + 4 = 7 ≡ 7 mod 8
Reduce 28 − 11 modulo 8.

Reduce 28 − 11 modulo 8.

Also notice:
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8) and 4 − 3 = 1 ≡ 1 mod 8
This is not a coincidence!
In general:
If \(a \equiv A \pmod{m}\) and \(b \equiv B \pmod{m}\), then
(i) \(a + b \equiv A + B \pmod{m}\)
(ii) \(a - b \equiv A - B \pmod{m}\)
First Some Modular Arithmetic

\[28 \equiv 4 \pmod{8} \] and \[11 \equiv 3 \pmod{8} \].

What happens when we add or subtract?

Reduce \(28 + 11 \) modulo 8.

\[28 + 11 = 39 \]

\[39 \equiv 7 \pmod{8} \]
28 ≡ 4 \ (mod \ 8) \text{ and } 11 ≡ 3 \ (mod \ 8).

What happens when we add or subtract?

Reduce 28 + 11 modulo 8.
28 + 11 = 39 ≡ 7 \ (mod \ 8).

Also notice:
28 ≡ 4 \ (mod \ 8) \text{ and } 11 ≡ 3 \ (mod \ 8) \text{ and } 3 + 4 = 7 ≡ 7 \mod 8

Reduce 28 - 11 modulo 8.
28 - 11 = 17 ≡ 1 \ (mod \ 8).

Also notice:
28 ≡ 4 \ (mod \ 8) \text{ and } 11 ≡ 3 \ (mod \ 8) \text{ and } 4 - 3 = 1 ≡ 1 \mod 8

This is not a coincidence!

In general:
If \(a ≡ A \ (mod \ m) \) \text{ and } \(b ≡ B \ (mod \ m) \), then
\(a + b ≡ A + B \ (mod \ m) \)
\(a - b ≡ A - B \ (mod \ m) \).
First Some Modular Arithmetic

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8}.

What happens when we add or subtract?

Reduce 28 + 11 modulo 8.

28 + 11 = 39 \equiv 7 \pmod{8}.

Also notice:

Reduce 28 - 11 modulo 8.

28 - 11 = 17 \equiv 1 \pmod{8}.

Also notice:

This is not a coincidence!

In general:

If \(a \equiv A \pmod{m} \text{ and } b \equiv B \pmod{m}, \) then

(i) \(a + b \equiv A + B \pmod{m} \)

(ii) \(a - b \equiv A - B \pmod{m} \)
First Some Modular Arithmetic

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8}.
What happens when we add or subtract?

Reduce 28 + 11 modulo 8.
28 + 11 = 39 \equiv 7 \pmod{8}.
Also notice:
28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 3 + 4 = 7 \equiv 7 \pmod{8}

Reduce 28 - 11 modulo 8.
28 - 11 = 17 \equiv 1 \pmod{8}.
Also notice:
28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 4 - 3 = 1 \equiv 1 \pmod{8}

This is not a coincidence!
In general:
If \(a \equiv A \pmod{m}\) and \(b \equiv B \pmod{m}\), then
(i) \(a + b \equiv A + B \pmod{m}\)
(ii) \(a - b \equiv A - B \pmod{m}\)
First Some Modular Arithmetic

28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).
What happens when we add or subtract?

Reduce $28 + 11$ modulo 8.
$28 + 11 = 39 ≡ 7$ (mod 8).
Also notice:
$28 ≡ 4$ (mod 8) and $11 ≡ 3$ (mod 8) and $3 + 4 = 7$
28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8}.
What happens when we add or subtract?

Reduce \(28 + 11\) modulo 8.
\[28 + 11 = 39 \equiv 7 \pmod{8}.
Also notice:
\[28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 3 + 4 = 7 \equiv 7 \pmod{8}\]
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).
What happens when we add or subtract?

Reduce $28 + 11$ modulo 8.
$28 + 11 = 39 \equiv 7 \pmod{8}$.
Also notice:
$28 \equiv 4 \pmod{8}$ and $11 \equiv 3 \pmod{8}$ and $3 + 4 = 7 \equiv 7 \pmod{8}$

Reduce $28 - 11$ modulo 8.
First Some Modular Arithmetic

28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).
What happens when we add or subtract?

Reduce 28 + 11 modulo 8.
28 + 11 = 39 ≡ 7 (mod 8).
Also notice:
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8) and 3 + 4 = 7 ≡ 7 (mod 8)

Reduce 28 − 11 modulo 8.
28 − 11 = 17
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).

What happens when we add or subtract?

Reduce $28 + 11$ modulo 8.

$28 + 11 = 39 ≡ 7$ (mod 8).

Also notice:

$28 ≡ 4$ (mod 8) and $11 ≡ 3$ (mod 8) and $3 + 4 = 7 ≡ 7$ mod 8

Reduce $28 - 11$ modulo 8.

$28 - 11 = 17 ≡ 1$ (mod 8).
First Some Modular Arithmetic

28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).
What happens when we add or subtract?

Reduce 28 + 11 modulo 8.
28 + 11 = 39 ≡ 7 (mod 8).
Also notice:
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8) and 3 + 4 = 7 ≡ 7 (mod 8)

Reduce 28 − 11 modulo 8.
28 − 11 = 17 ≡ 1 (mod 8).
Also notice:
First Some Modular Arithmetic

28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).
What happens when we add or subtract?

Reduce $28 + 11$ modulo 8.
$28 + 11 = 39 ≡ 7$ (mod 8).
Also notice:
$28 ≡ 4$ (mod 8) and $11 ≡ 3$ (mod 8) and $3 + 4 = 7 ≡ 7$ (mod 8)

Reduce $28 - 11$ modulo 8.
$28 - 11 = 17 ≡ 1$ (mod 8).
Also notice:
$28 ≡ 4$ (mod 8) and $11 ≡ 3$ (mod 8) and
First Some Modular Arithmetic

28 \equiv 4 \pmod{8} \quad \text{and} \quad 11 \equiv 3 \pmod{8}.

What happens when we add or subtract?

Reduce 28 + 11 modulo 8.

28 + 11 = 39 \equiv 7 \pmod{8}.

Also notice:

28 \equiv 4 \pmod{8} \quad \text{and} \quad 11 \equiv 3 \pmod{8} \quad \text{and} \quad 3 + 4 = 7 \equiv 7 \pmod{8}

Reduce 28 - 11 modulo 8.

28 - 11 = 17 \equiv 1 \pmod{8}.

Also notice:

28 \equiv 4 \pmod{8} \quad \text{and} \quad 11 \equiv 3 \pmod{8} \quad \text{and} \quad 4 - 3 = 1
First Some Modular Arithmetic

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8}.

What happens when we add or subtract?

Reduce 28 + 11 modulo 8.
28 + 11 = 39 \equiv 7 \pmod{8}.

Also notice:
28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 3 + 4 = 7 \equiv 7 \pmod{8}

Reduce 28 – 11 modulo 8.
28 – 11 = 17 \equiv 1 \pmod{8}.

Also notice:
28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 4 – 3 = 1 \equiv 1 \pmod{8}
First Some Modular Arithmetic

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8}.

What happens when we add or subtract?

Reduce 28 + 11 modulo 8.

28 + 11 = 39 \equiv 7 \pmod{8}.

Also notice:

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 3 + 4 = 7 \equiv 7 \pmod{8}

Reduce 28 - 11 modulo 8.

28 - 11 = 17 \equiv 1 \pmod{8}.

Also notice:

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 4 - 3 = 1 \equiv 1 \pmod{8}

This is not a coincidence!
First Some Modular Arithmetic

\[28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8}. \]
What happens when we add or subtract?

Reduce \(28 + 11 \) modulo 8.
\[28 + 11 = 39 \equiv 7 \pmod{8}. \]
Also notice:
\[28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 3 + 4 = 7 \equiv 7 \pmod{8} \]
Reduce \(28 - 11 \) modulo 8.
\[28 - 11 = 17 \equiv 1 \pmod{8}. \]
Also notice:
\[28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 4 - 3 = 1 \equiv 1 \pmod{8} \]
This is not a coincidence!

In general: If \(a \equiv A \pmod{m} \) and \(b \equiv B \pmod{m} \), then
First Some Modular Arithmetic

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8}.
What happens when we add or subtract?

Reduce 28 + 11 modulo 8.
28 + 11 = 39 \equiv 7 \pmod{8}.
Also notice:
28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 3 + 4 = 7 \equiv 7 \pmod{8}

Reduce 28 − 11 modulo 8.
28 − 11 = 17 \equiv 1 \pmod{8}.
Also notice:
28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 4 − 3 = 1 \equiv 1 \pmod{8}

This is not a coincidence!

In general: If \(a \equiv A \pmod{m} \) and \(b \equiv B \pmod{m} \), then

\[(i) \quad a + b \equiv \]

\[(ii) \quad a - b \equiv \]
28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8}.

What happens when we add or subtract?

Reduce 28 + 11 modulo 8.

28 + 11 = 39 \equiv 7 \pmod{8}.

Also notice:

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 3 + 4 = 7 \equiv 7 \pmod{8}

Reduce 28 − 11 modulo 8.

28 − 11 = 17 \equiv 1 \pmod{8}.

Also notice:

28 \equiv 4 \pmod{8} \text{ and } 11 \equiv 3 \pmod{8} \text{ and } 4 − 3 = 1 \equiv 1 \pmod{8}

This is not a coincidence!

In general: If \(a \equiv A \pmod{m} \) and \(b \equiv B \pmod{m} \), then

(i) \(a + b \equiv A + B \pmod{m} \)
First Some Modular Arithmetic

28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).
What happens when we add or subtract?

Reduce 28 + 11 modulo 8.
28 + 11 = 39 ≡ 7 (mod 8).
Also notice:
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8) and 3 + 4 = 7 ≡ 7 (mod 8)

Reduce 28 − 11 modulo 8.
28 − 11 = 17 ≡ 1 (mod 8).
Also notice:
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8) and 4 − 3 = 1 ≡ 1 (mod 8)

This is not a coincidence!

In general: If $a ≡ A$ (mod m) and $b ≡ B$ (mod m), then

(i) $a + b ≡ A + B$ (mod m)
(ii) $a − b ≡$
First Some Modular Arithmetic

28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8).
What happens when we add or subtract?

Reduce 28 + 11 modulo 8.
28 + 11 = 39 ≡ 7 (mod 8).
Also notice:
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8) and 3 + 4 = 7 ≡ 7 (mod 8).

Reduce 28 − 11 modulo 8.
28 − 11 = 17 ≡ 1 (mod 8).
Also notice:
28 ≡ 4 (mod 8) and 11 ≡ 3 (mod 8) and 4 − 3 = 1 ≡ 1 (mod 8).

This is not a coincidence!

In general: If $a \equiv A \pmod{m}$ and $b \equiv B \pmod{m}$, then

(i) $a + b \equiv A + B \pmod{m}$
(ii) $a - b \equiv A - B \pmod{m}$
Example 2

In general:

If \(a \equiv A \text{ (mod } m) \) and \(b \equiv B \text{ (mod } m) \), then

(i) \(a + b \equiv A + B \text{ (mod } m) \)

(ii) \(a - b \equiv A - B \text{ (mod } m) \)

Reduce (in two different ways)

a) \(17 + 21 \text{ mod } 6 \)

b) \(83 - 21 \text{ mod } 3 \)

c) \(21 - 83 \text{ mod } 11 \)
Example 2

In general: If \(a \equiv A \pmod{m} \) and \(b \equiv B \pmod{m} \), then

(i) \(a + b \equiv A + B \pmod{m} \)

(ii) \(a - b \equiv A - B \pmod{m} \)

Reduce (in two different ways)

a) \(17 + 21 \pmod{6} \)

b) \(83 - 21 \pmod{3} \)

c) \(21 - 83 \pmod{11} \)
Exercise Set 1

1. Reduce 237288 modulo 5
2. Reduce 192 + 118 modulo 5
3. Reduce 192 − 118 modulo 5
4. Reduce 118 − 192 modulo 5
5. Today is a Wednesday. What day of the week will it be
 a) 100 days from now?
 b) 365 days from now?
 c) 1000 days from now?
6. Emily celebrated her 13th birthday on Wednesday, February 19th, 2014. On what day of the week was she born? (Don’t forget about the leap years in 2004, 2008 and 2012!)
Answers to Exercise Set 1:

1. \[237288 \equiv 3 \mod 5\]
2. \[192 + 118 \equiv 0 \mod 5\]
3. \[192 - 118 \equiv 4 \mod 5\]
4. \[118 - 192 \equiv 1 \mod 5\]
5. a) Friday
 b) Thursday
 c) Tuesday
6. Monday
Recall:
We have a sender, Alice, and a receiver, Bob. Alice wants to send a message M to Bob, over an insecure channel, but she wants only Bob to be able to read the message. There is a good chance that at least part of the transmitted message will be intercepted by and eavesdropper, Eve.

Alice needs to “encrypt” the message so that Eve cannot read it.
The Caesar Shift Cipher

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25). Think of the alphabet mod 26.

Pick a random number to be your key, call it k.

Encryption Algorithm:
Encrypt each letter individually using the formula:

$$\text{coded} = (\text{original} + k) \pmod{26}$$

Decryption Algorithm:
Decrypt each letter individually using the formula:

$$\text{original} = (\text{coded} - k) \pmod{26}$$

Jen Nelson jen.nelson@uwaterloo.ca
Intermediate Math Circles March 19, 2014 Cryptography I
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
Think of the alphabet mod 26.
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
Think of the alphabet mod 26.
Pick a random number to be your key, call it k.
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
Think of the alphabet mod 26.
Pick a random number to be your key, call it k.

Encryption Algorithm:
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
Think of the alphabet mod 26.
Pick a random number to be your key, call it k.

Encryption Algorithm: Encrypt each letter individually using the formula:

$$\text{coded} = (\text{original} + k) \mod 26$$
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
Think of the alphabet mod 26.
Pick a random number to be your key, call it k.

Encryption Algorithm: Encrypt each letter individually using the formula:

$$\text{coded} = (\text{original} + k) \pmod{26}$$
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
Think of the alphabet mod 26.
Pick a random number to be your key, call it k.

Encryption Algorithm: Encrypt each letter individually using the formula:

$$\text{coded} = (\text{original} + k) \pmod{26}$$

Decryption Algorithm:
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
Think of the alphabet mod 26.
Pick a random number to be your key, call it k.

Encryption Algorithm: Encrypt each letter individually using the formula:

$$\text{coded} = (\text{original} + k) \pmod{26}$$

Decryption Algorithm: Decrypt each letter individually using the formula:
The Caesar Shift Cipher:

Assign the numbers 0 to 25 to the letters A to Z (so A is 0, B is 1 and so on, Z is 25).
Think of the alphabet mod 26.
Pick a random number to be your key, call it k.

Encryption Algorithm: Encrypt each letter individually using the formula:

$$\text{coded} = (\text{original} + k) \ (\text{mod} \ 26)$$

Decryption Algorithm: Decrypt each letter individually using the formula:

$$\text{original} = (\text{coded} - k) \ (\text{mod} \ 26)$$
The Caesar Shift Cipher:

Encryption Algorithm: \[\text{coded} = (\text{original} + k) \pmod{26} \]

Decryption Algorithm: \[\text{original} = (\text{coded} - k) \pmod{26} \]

Suppose we pick \(k = 7 \).

- A is encrypted as H since \(0 + 7 \equiv 7 \pmod{26} \)
- B is encrypted as I since \(1 + 7 \equiv 8 \pmod{26} \)
- H is encrypted as O since \(7 + 7 \equiv 14 \pmod{26} \)
- U is encrypted as B since \(20 + 7 = 27 \equiv 1 \pmod{26} \)

and so on. We get the following permutation of the alphabet:

\[
\begin{align*}
A & \rightarrow H \\
B & \rightarrow I \\
C & \rightarrow O \\
D & \rightarrow P \\
E & \rightarrow R \\
F & \rightarrow S \\
G & \rightarrow T \\
H & \rightarrow U \\
I & \rightarrow V \\
J & \rightarrow W \\
K & \rightarrow X \\
L & \rightarrow Y \\
M & \rightarrow Z \\
N & \rightarrow A \\
O & \rightarrow B \\
P & \rightarrow C \\
Q & \rightarrow D \\
R & \rightarrow E \\
S & \rightarrow F \\
T & \rightarrow G \\
U & \rightarrow H \\
V & \rightarrow I \\
W & \rightarrow O \\
X & \rightarrow P \\
Y & \rightarrow R \\
Z & \rightarrow S
\end{align*}
\]

So plaintext CRYPTOFUN is encrypted as

How does Bob decrypt the ciphertext into plaintext?
The Caesar Shift Cipher:

Encryption Algorithm: coded = (original + k) (mod 26)
Decryption Algorithm: original = (coded − k) (mod 26)

Suppose we pick \(k = 7 \).
The Caesar Shift Cipher:

Encryption Algorithm: \(\text{coded} = (\text{original} + k) \pmod{26} \)

Decryption Algorithm: \(\text{original} = (\text{coded} - k) \pmod{26} \)

Suppose we pick \(k = 7 \).

A is encrypted as

Suppose we pick \(k = 7 \).

A is encrypted as

Jen Nelson
jen.nelson@uwaterloo.ca
The Caesar Shift Cipher:

Encryption Algorithm: coded = (original + k) (mod 26)

Decryption Algorithm: original = (coded − k) (mod 26)

Suppose we pick $k = 7$.
A is encrypted as H since $0 + 7 \equiv 7 \mod 26$
B is encrypted as
The Caesar Shift Cipher:

Encryption Algorithm: \(\text{coded} = (\text{original} + k) \pmod{26} \)

Decryption Algorithm: \(\text{original} = (\text{coded} - k) \pmod{26} \)

Suppose we pick \(k = 7 \).

A is encrypted as H since \(0 + 7 \equiv 7 \pmod{26} \)
B is encrypted as I since \(1 + 7 \equiv 8 \pmod{26} \)
H is encrypted as O since \(7 + 7 \equiv 14 \pmod{26} \)
U is encrypted as B since \(20 + 7 = 27 \equiv 1 \pmod{26} \)
and so on. We get the following permutation of the alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

So plaintext CRYPTOFUN is encrypted as

Jen Nelson jen.nelson@uwaterloo.ca
Intermediate Math Circles March 19, 2014 Cryptography I
The Caesar Shift Cipher:

Encryption Algorithm: \(\text{coded} = (\text{original} + k) \mod 26 \)

Decryption Algorithm: \(\text{original} = (\text{coded} - k) \mod 26 \)

Suppose we pick \(k = 7 \).

- A is encrypted as H since \(0 + 7 \equiv 7 \mod 26 \)
- B is encrypted as I since \(1 + 7 \equiv 8 \mod 26 \)
- H is encrypted as O since \(7 + 7 \equiv 14 \mod 26 \)
- U is encrypted as
The Caesar Shift Cipher:

Encryption Algorithm: \(\text{coded} = (\text{original} + k) \pmod{26}\)

Decryption Algorithm: \(\text{original} = (\text{coded} - k) \pmod{26}\)

Suppose we pick \(k = 7\).

A is encrypted as H since \(0 + 7 \equiv 7 \pmod{26}\)

B is encrypted as I since \(1 + 7 \equiv 8 \pmod{26}\)

H is encrypted as O since \(7 + 7 \equiv 14 \pmod{26}\)

U is encrypted as B since \(20 + 7 = 27 \equiv 1 \pmod{26}\)
The Caesar Shift Cipher:

Encryption Algorithm: coded = (original + k) (mod 26)
Decryption Algorithm: original = (coded − k) (mod 26)

Suppose we pick \(k = 7 \).
A is encrypted as H since \(0 + 7 \equiv 7 \mod 26 \)
B is encrypted as I since \(1 + 7 \equiv 8 \mod 26 \)
H is encrypted as O since \(7 + 7 \equiv 14 \mod 26 \)
U is encrypted as B since \(20 + 7 = 27 \equiv 1 \mod 26 \)
and so on. We get the following permutation of the alphabet:

A B C D E F G H I J K L
M N O P Q R S T U V W X Y Z
The Caesar Shift Cipher:

Encryption Algorithm: \(\text{coded} = (\text{original} + k) \pmod{26} \)

Decryption Algorithm: \(\text{original} = (\text{coded} - k) \pmod{26} \)

Suppose we pick \(k = 7 \).

A is encrypted as H since \(0 + 7 \equiv 7 \pmod{26} \)

B is encrypted as I since \(1 + 7 \equiv 8 \pmod{26} \)

H is encrypted as O since \(7 + 7 \equiv 14 \pmod{26} \)

U is encrypted as B since \(20 + 7 = 27 \equiv 1 \pmod{26} \)

and so on. We get the following permutation of the alphabet:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

How does Bob decrypt the ciphertext into plaintext?
The Caesar Shift Cipher:

Encryption Algorithm: \(\text{coded} = (\text{original} + k) \mod 26 \)

Decryption Algorithm: \(\text{original} = (\text{coded} - k) \mod 26 \)

Suppose we pick \(k = 7 \).

- A is encrypted as H since \(0 + 7 \equiv 7 \mod 26 \)
- B is encrypted as I since \(1 + 7 \equiv 8 \mod 26 \)
- H is encrypted as O since \(7 + 7 \equiv 14 \mod 26 \)
- U is encrypted as B since \(20 + 7 = 27 \equiv 1 \mod 26 \)

and so on. We get the following permutation of the alphabet:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

So plaintext CRYPTOFUN is encrypted as
The Caesar Shift Cipher:

Encryption Algorithm: coded = (original + k) (mod 26)

Decryption Algorithm: original = (coded − k) (mod 26)

Suppose we pick $k = 7$.

A is encrypted as H since $0 + 7 \equiv 7 \mod 26$

B is encrypted as I since $1 + 7 \equiv 8 \mod 26$

H is encrypted as O since $7 + 7 \equiv 14 \mod 26$

U is encrypted as B since $20 + 7 = 27 \equiv 1 \mod 26$

and so on. We get the following permutation of the alphabet:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

So plaintext CRYPTO FUN is encrypted as

How does Bob decrypt the ciphertext into plaintext?
Example 3

a) Using a Caesar Shift Cipher and secret key 11, encrypt the message “I WANT COOKIES”.

b) Using a Caesar Shift Cipher and secret key 11, decrypt the message “NSPNV ESP NFAMZLCO”.

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z
Exercise Set 2

1. Encode the message “MODULAR ARITHMETIC” using a Caesar Shift cipher with secret key $k = 7$.

2. Decode the message “SLA AOLT LHA JHRL” using a Caesar Shift cipher with secret key $k = 7$.

3. Encode the message “ALL SQUARES ARE RECTANGLES” using a Caesar Shift cipher with secret key $k = 14$.

4. Decode the message “PIH BCH OZZ FSQHOBUZSG OFS GEIOFSG” using a Caesar Shift cipher with secret key $k = 14$.

5. Find a partner to work with. Think of a secret message to send to them and encode it using a Caesar Shift cipher with a secret key of your choice. Give your partner the coded message and shift number. Decode your partner’s message to you.
Answers to Exercise Set 2:

1. TVKBSHY HYPAOTLAPJ
2. LET THEM EAT CAKE
3. OZZ GEIOFSG OFS FSQHOBUZSG
4. BUT NOT ALL RECTANGLES ARE SQUARES
Encryption and Decryption are very easy with the Caesar Shift Cipher.

Sadly, this is also very easy to break. Can you see how?

Just to try all possible keys!

There are only 26 - you don't even need a computer to try this!
Encryption and Decryption are very easy with the Caesar Shift Cipher.

Sadly, this it is also very easy to break. Can you see how?
Encryption and Decryption are very easy with the Caesar Shift Cipher.

Sadly, this it is also very easy to break. Can you see how?

Just to try all possible keys!
Encryption and Decryption are very easy with the Caesar Shift Cipher.

Sadly, this it is also very easy to break. Can you see how?

Just to try all possible keys! There are only 26 - you don’t even need a computer to try this!
Breaking The Caesar Shift Cipher

Encryption and Decryption are very easy with the Caesar Shift Cipher.

Sadly, this it is also very easy to break. Can you see how?

Just to try all possible keys! There are only 26 - you don’t even need a computer to try this!

How can we improve on the Caesar shift cipher?
A Random Substitution Cipher

How can we improve on the Caesar shift cipher?

Instead of shifting the alphabet, use a random permutation of the alphabet to get a Substitution Cipher.

For example:

A
B
C
D
E
F
G
H
I
J
K
L
O
Y
C
P
K
G
V
W
B
Q
U
Z
J
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
X
E
N
M
H
T
D
S
I
L
F
R
A

The table above acts as the key for this cipher.

How many possible keys are there?

$26! \approx 4 \times 10^{26}$

Breaking the cipher by trying all keys is no longer feasible, even for a computer!
How can we improve on the Caesar shift cipher?

Instead of shifting the alphabet, use a random permutation of the alphabet to get a **Substitution Cipher**.
How can we improve on the Caesar shift cipher?

Instead of shifting the alphabet, use a random permutation of the alphabet to get a **Substitution Cipher**.

For example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Y</td>
<td>C</td>
<td>P</td>
<td>K</td>
<td>G</td>
<td>V</td>
<td>W</td>
<td>B</td>
<td>Q</td>
<td>U</td>
<td>Z</td>
<td>J</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>X</td>
<td>E</td>
<td>N</td>
<td>M</td>
<td>H</td>
<td>T</td>
<td>D</td>
<td>S</td>
<td>I</td>
<td>L</td>
<td>F</td>
<td>R</td>
<td>A</td>
</tr>
</tbody>
</table>

The table above acts as the key for this cipher. How many possible keys are there?

$26! \approx 4 \times 10^{26}$

Breaking the cipher by trying all keys is no longer feasible, even for a computer!
A Random Substitution Cipher

How can we improve on the Caesar shift cipher?

Instead of shifting the alphabet, use a random permutation of the alphabet to get a **Substitution Cipher**.

For example:

```
A | B | C | D | E | F | G | H | I | J | K | L | M
---|---|---|---|---|---|---|---|---|---|---|---|---
O | Y | C | P | K | G | V | W | B | Q | U | Z | J
```

```
N | O | P | Q | R | S | T | U | V | W | X | Y | Z
---|---|---|---|---|---|---|---|---|---|---|---|---
X | E | N | M | H | T | D | S | I | L | F | R | A
```

The table above acts as the **key** for this cipher.
A Random Substitution Cipher

How can we improve on the Caesar shift cipher?

Instead of shifting the alphabet, use a random permutation of the alphabet to get a **Substitution Cipher**.

For example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Y</td>
<td>C</td>
<td>P</td>
<td>K</td>
<td>G</td>
<td>V</td>
<td>W</td>
<td>B</td>
<td>Q</td>
<td>U</td>
<td>Z</td>
<td>J</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>X</td>
<td>E</td>
<td>N</td>
<td>M</td>
<td>H</td>
<td>T</td>
<td>D</td>
<td>S</td>
<td>I</td>
<td>L</td>
<td>F</td>
<td>R</td>
<td>A</td>
</tr>
</tbody>
</table>

The table above acts as the **key** for this cipher.

How many possible keys are there?
A Random Substitution Cipher

How can we improve on the Caesar shift cipher?

Instead of shifting the alphabet, use a random permutation of the alphabet to get a **Substitution Cipher**.

For example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Y</td>
<td>C</td>
<td>P</td>
<td>K</td>
<td>G</td>
<td>V</td>
<td>W</td>
<td>B</td>
<td>Q</td>
<td>U</td>
<td>Z</td>
<td>J</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>X</td>
<td>E</td>
<td>N</td>
<td>M</td>
<td>H</td>
<td>T</td>
<td>D</td>
<td>S</td>
<td>I</td>
<td>L</td>
<td>F</td>
<td>R</td>
<td>A</td>
</tr>
</tbody>
</table>

The table above acts as the **key** for this cipher.

How many possible keys are there? $26! \approx 4 \times 10^{26}$
How can we improve on the Caesar shift cipher?

Instead of shifting the alphabet, use a random permutation of the alphabet to get a **Substitution Cipher**.

For example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Y</td>
<td>C</td>
<td>P</td>
<td>K</td>
<td>G</td>
<td>V</td>
<td>W</td>
<td>B</td>
<td>Q</td>
<td>U</td>
<td>Z</td>
<td>J</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>X</td>
<td>E</td>
<td>N</td>
<td>M</td>
<td>H</td>
<td>T</td>
<td>D</td>
<td>S</td>
<td>I</td>
<td>L</td>
<td>F</td>
<td>R</td>
<td>A</td>
</tr>
</tbody>
</table>

The table above acts as the **key** for this cipher.

How many possible keys are there? \(26! \approx 4 \times 10^{26}\)

Breaking the cipher by trying all keys is no longer feasible, even for a computer!
Example 4:

a) Using the Substitution Cipher above, encrypt the message “I WANT COOKIES”.

b) Using the Substitution Cipher above, decrypt the message “BX DWK CEEUBK QOH”.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Y</td>
<td>C</td>
<td>P</td>
<td>K</td>
<td>G</td>
<td>V</td>
<td>W</td>
<td>B</td>
<td>Q</td>
<td>U</td>
<td>Z</td>
<td>J</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>X</td>
<td>E</td>
<td>N</td>
<td>M</td>
<td>H</td>
<td>T</td>
<td>D</td>
<td>S</td>
<td>I</td>
<td>L</td>
<td>F</td>
<td>R</td>
<td>A</td>
</tr>
</tbody>
</table>
Breaking a Substitution Cipher

The Substitution Cipher is better than the Caesar Shift Cipher, but unfortunately, it can also be easily broken. How?

A statistical analysis can be used, using known letter frequencies in the English alphabet.

Order of relatively frequency:

1. E
3. D, L
5. V, K, J, X, Q, Z
The Substitution Cipher is better than the Caesar Shift Cipher, but unfortunately, it can also be easily broken.
Breaking a Substitution Cipher

The Substitution Cipher is better than the Caesar Shift Cipher, but unfortunately, it can also be easily broken.

How?
Breaking a Substitution Cipher

The Substitution Cipher is better than the Caesar Shift Cipher, but unfortunately, it can also be easily broken.

How?

A statistical analysis can be used, using known letter frequencies in the English alphabet.
The Substitution Cipher is better than the Caesar Shift Cipher, but unfortunately, it can also be easily broken.

How?

A statistical analysis can be used, using known letter frequencies in the English alphabet.

Order of relatively frequency:

1. E
3. D, L
5. V, K, J, X, Q, Z
Exercise Set 3 Using known letter frequencies in the English alphabet, try to break the code below.
The message was encrypted with a substitution cipher.

IFYYOL PYZZR AXRGVK QWBZ IQL IFWK FB ZWEV PXB QB MFL ZWV ZJ BIV JVM BIFB KQK. IVYRQZWV DYFWDVYL IFK LQRGUO YZUUVK ZHVY ZW BIV DYZXWK FWK WVHQUUVL IFKWB RZHVK FB FUU. GVYIFGL PYZZRL UQTV IZYLVL EZXUK BVUU MIVW OZX MVYV FJYFKQ BIZXDIB IFYYO BIVYV MFL F SXFHVY QW WVHQUUVL HZQEV BIFB LFQK ZWUO BZZ EUVFYUO BIFB IV MFWBVK BZ TVVG IQL JVVB ZW BIV DYZXWK. RFKFR IZZEI BIVW LIZMVK BIVR IZM BZ RZXWB BIVQY PYZZRL MQBIZXB LUQKQWD ZJJ BIV VWK FWK MFUTVK XG FWK KZMW BIV YZML EZYYVEBQWD BIVQY DYQGL.
Exercise Set 3

Here are the frequencies of each letter in this example:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>34</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>28</td>
<td>7</td>
<td>6</td>
<td>32</td>
<td>6</td>
<td>23</td>
<td>19</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>21</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>45</td>
<td>26</td>
<td>11</td>
<td>27</td>
<td>38</td>
</tr>
</tbody>
</table>
The ciphers that we looked at tonight clearly are not strong enough to ensure communications are secure.
The ciphers that we looked at tonight clearly are not strong enough to ensure communications are secure.

Next week we will begin our build up to another encryption scheme: RSA Encryption.