Intermediate Math Circles
Number Theory I
Problems and Solutions

1. Complete your Sieve of Erastothenes for the values 151-200.

2. Determine the prime factorization of the following numbers.
 (a) 364 (b) 693 (c) 3185

 (a) $364 = 2^2 \times 7 \times 13$ (b) $693 = 3^2 \times 7 \times 11$ (c) $3185 = 5 \times 7^2 \times 13$

3. A solid rectangular box is made of 1 cm3 pieces. The volume of the rectangular prism is 1925 cm3. How many different dimensions of the box are possible?

 Since the volume of a rectangular box is found by $V = \text{length} \times \text{width} \times \text{height}$, the factors of 1925 can be used to determine all possible dimensions of this rectangular prism. It is important to note that the length, width and height of the rectangular prism must be positive integer values greater than 0.
The prime factorization of 1925 is $5^2 \times 7 \times 11$. The possible arrangements of these 4 prime factors to make the dimensions of the rectangular box are,

$$
\begin{align*}
5^2 \times 7 \times 11 &= 25 \times 7 \times 11 \\
5 \times (5 \times 7) \times 11 &= 5 \times 35 \times 11 \\
5 \times 7 \times (5 \times 11) &= 5 \times 7 \times 55 \\
5 \times 5 \times (7 \times 11) &= 5 \times 5 \times 77
\end{align*}
$$

Therefore, there are 4 possible dimensions of the box.

4. The sum of the three digit number $2A3$ and 326 is $5T9$. If $5T9$ is divisible by 9, find the value of $A + T$.

For the number $5T9$ to be divisible by 9, the sum of its digits must also be divisible by 9. i.e. $5 + T + 9 = T + 14$ must be divisible by 9. Since $0 \leq T \leq 9$, the only possible value of T is 4.

Also, $A + 2 = T$, which means that $A + 2 = 4$. Therefore, $A = 2$.

The sum $A + T = 2 + 4 = 6$.

5. If n is a positive integer, then $n!$ is defined as the product of all integers from 1 to n inclusive. For example, $6! = 1 \times 2 \times 3 \times 4 \times 5 \times 6$. Determine the number of times that 5 will occur as a prime factor of $32!$.

$32! = 1 \times 2 \times 3 \times \cdots \times 30 \times 31 \times 32$.

Each number in this product that is a multiple of 5, will give a prime factor of 5. The multiples of 5 in this product are 5, 10, 15, 20, 25, 30.

This list could be written as $5, 2 \times 5, 3 \times 5, 4 \times 5, 5^2, 6 \times 5$.

Therefore, the prime factor 5 will occur 7 times in $32!$.

6. Three adults are all younger than 40 years in age. The product of their ages is 17710. Determine the sum of their ages.

The prime factorization of 17710 is $2 \times 5 \times 7 \times 11 \times 23$.

These 5 prime factors will be used to make the product of the three ages. Since each adult is younger than 40, one adult must be 23 years old. To make the remaining two ages under 40, the 2 must be paired with the 11 and the 5 must be paired with the 7.

This produces the product $23 \times (2 \times 11) \times (5 \times 7) = 23 \times 22 \times 35 = 17710$.

Therefore the adults must be aged 22, 23, and 35.
7. The digits 1, 2, 3, 4, 5 are each used only once to make a five digit number \(abcde \). The number made by the three digits \(abc \) is divisible by 4. The number made by the three digits \(bcd \) is divisible by 5, and the number made by the three digits \(cde \) is divisible by 3. Determine the digit \(a \).

Since \(abc \) is divisible by 4, \(bc \) must be a multiple of 4. The possible combinations of the digits 1, 2, 3, 4, 5 to make a multiple of 4 are 12, 24, 32, 52.

Since \(bcd \) is divisible by 5, \(d = 5 \) and none of \(a, b, c, e \) can be 5. The list of possible combinations of \(bc \) is shortened to 12, 24, 32.

Since \(cde \) is divisible by 3, then \(c + d + e = c + 5 + e \) must also be divisible by 3. The list of possible combinations of \(cde \) is 153, 351, 354, 453, which implies that \(c \) could only be 1, 3 or 4. Examining the possible values of \(bc \) we can determine that \(c = 4 \) since the only possible value of \(bc \) that ends in 1, 3 or 4 is 24. Consequently, \(cde \) must be 453.

Therefore, \(abcde \) must be \(a2453 \) and \(a = 1 \).

8. The product of 20\(^{50} \) and 50\(^{20} \) is written as an integer in expanded form. Determine the number of zeros at the end of the resulting integer.

The number of zeros at the end of a positive integer is equal to the number of factors of 10 contained within the number. A factor of 10 is made by \(2 \times 5 \). To count the number of factors of 10 in the product \(20^{50} \times 50^{20} \), count the number of pairs of prime factors 2 and 5.

\[
20^{50} \times 50^{20} = (2^2 \times 5)^{50} \times (2 \times 5^2)^{20} = (2^2)^{50} \times (5)^{50} \times (2)^{20} \times (5^2)^{20} = (2)^{120} \times (5)^{90}
\]

Therefore, there are 90 possibilities pairing of 2 and 5 i.e. \((2 \times 5)^{90} = 10^{90} \) and the product of 20\(^{50} \) and 50\(^{20} \) will have 90 zeros.

9. The product of 792 and positive integer, \(n \), is a perfect square. Determine the smallest possible value of \(n \).

The prime factorization of 792 is \(2^3 \times 3^2 \times 11 \). For the product of 792\(n \) to be a perfect square, each of its prime factors must be paired with itself. The number 792 has two pairs of equal factors, \(2^2 \) and \(3^2 \). The factors that must be paired to make 792\(n \) a perfect square are 2 and 11. Therefore, the smallest possible value of \(n \) is \(2 \times 11 = 22 \).
10. The number of divisors of 245, other than 1 and 245 are,
(a) 3 (b) 4 (c) 5 (d) 6 (e) 7

The prime factorization of 245 is 5×7^2.
The divisors of 245 can be found with the following table.

<table>
<thead>
<tr>
<th></th>
<th>7^0</th>
<th>7^1</th>
<th>7^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5^0</td>
<td>1</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>5^1</td>
<td>5</td>
<td>35</td>
<td>245</td>
</tr>
</tbody>
</table>

The number 245 has 4 possible divisors, if 1 and 245 are not included. The answer is (b).

11. Determine the sum of the proper divisors of 1089.

The prime factorization of 1089 is $3^2 \times 11^2$.
The divisors of 245 can be found with the following table.

<table>
<thead>
<tr>
<th></th>
<th>3^0</th>
<th>3^1</th>
<th>3^2</th>
<th>Row Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>11^0</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>11^1</td>
<td>11</td>
<td>33</td>
<td>99</td>
<td>143</td>
</tr>
<tr>
<td>11^2</td>
<td>121</td>
<td>363</td>
<td>1089</td>
<td>1573</td>
</tr>
</tbody>
</table>

Column Sum

Sum of Divisors = First Row Sum \times First Column Sum
= 13×133
= 1729