Diophantine equations are equations intended to be solved in the integers.

We’re going to focus on Linear Diophantine Equations. That is, equations of the form $ax+by = c$, where a, b, c are given integers and we are solving for integers x and y.

For example:

$$7x + 3y = 4$$

or

$$10x + 4y = 12$$

How can we find solutions to these with x and y being integers?

Example 1: Suppose that Bob has $1.55 in quarters and dimes. How many quarters and how many dimes does he have? (There might be more than one solution!)

Solution: We’re trying to solve $25x + 10y = 155$ with x and y integers (which shouldn’t, in this case, be negative!). By trial-and-error we can find

$$x = 1 \quad y = 13$$

or

$$x = 3 \quad y = 8$$

or

$$x = 5 \quad y = 3$$

Are there any other solutions?
Example 2: A robot can move backwards or forwards with big steps (130 cm) or small steps (50 cm). Is there a series of moves it can make to end up 10 cm ahead of where it started? i.e., can we solve \(130x + 50y = 10\)?

Trial-and-error solution:

\[
x = 2 \quad y = -5 \\
\]

\[\rightarrow \rightarrow \leftarrow \leftarrow \leftarrow \quad 2 \text{ big steps forward} \quad 5 \text{ small steps back}
\]

OR

\[
x = 7 \quad y = -18
\]

There are many solutions.

It’s not always easy to find a solution to a linear Diophantine equation by trial and error. For example, suppose we were asked to find an integer solution to the linear Diophantine equation:

\[1053x + 481y = 13\]

Main question: If \(a\), \(b\), and \(c\) are integers, then how can you find a solution to

\[ax + by = c\]

where \(x\) and \(y\) are integers?

Trick question! There might not be a solution!

For example, look at the equation

\[3x + 6y = 5\]

If we could find integers \(x\) and \(y\) for which that holds, then \(x + 2y = \frac{5}{3}\).
And since \(x\) and \(y\) are integers, so is \(x + 2y\). But \(\frac{5}{3}\) is not an integer.

It appears as though, if any integer divides both \(a\) and \(b\), then

\[ax + by = c\]

can only have a solution if that integer also divides \(c\).

(An integer \(d\) “divides” another integer \(e\) if and only if there is some integer \(q\) such that \(e = qb\)).

Before we look at how to solve a linear Diophantine equation, let’s first investigate when there is a solution. It appears as though the divisors of \(a\) and \(b\) are going to be important.
The “greatest common divisor” of a and b is the largest integer that divides a and divides b. We write it as $\gcd(a, b)$.

For example:

- $\gcd(3, 6) = 3$
- $\gcd(10, 15) = 5$
- $\gcd(117, 55) = 1$
- $\gcd(84, 119) = 7$
- $\gcd(481, 1053) = 13$
- $\gcd(3551, 4399) = ?$
- $\gcd(104723, 103093) = ?$

1 divides everything, so $\gcd(a, b)$ is always at least 1.

What’s the best way to calculate $\gcd(a, b)$?

For small numbers a and b it’s not too hard to find \gcd by factoring a and b, but not as easy when trying to calculate $\gcd(104723, 103093)$ or $\gcd(3551, 4399)$

You can try to find all divisors, and see which ones divide both, but that could take all day!

Instead, we’ll use the **Euclidean Algorithm**.

First, the **Division Algorithm**: Suppose a, b are integers and $b > 0$.

There exists unique integers q, r such that

$a = qb + r$, where $0 \leq r < b$

(q - quotient, r - remainder)

For example,

- $a = 15, b = 6 \quad 15 = 2 \cdot 6 + 3$
- $a = 30, b = 6 \quad 30 = 5 \cdot 6 + 0$
- $a = -10, b = 6 \quad -10 = (-2) \cdot 6 + 2$
- $a = -2, b = 6 \quad -2 = (-1) \cdot 6 + 4$

Important Fact 1: If $a = qb + r$, then $\gcd(a, b) = \gcd(b, r)$.

For example,

$15 = 2 \cdot 6 + 3 \quad$ and $\quad \gcd(15, 6) = 3 = \gcd(6, 3)$

$30 = 5 \cdot 6 + 0 \quad$ and $\quad \gcd(30, 6) = 6 = \gcd(6, 0)$

$-10 = (-2) \cdot 6 + 2 \quad$ and $\quad \gcd(-10, 6) = 2 = \gcd(6, 2)$

$-2 = (-1) \cdot 6 + 4 \quad$ and $\quad \gcd(-2, 6) = 2 = \gcd(6, 4)$
Why is this fact useful?

Example 3: Calculate \(\gcd(117, 55) \)

Solution: \(117 = 2 \cdot 55 + 7 \), so

\[
\gcd(117, 55) = \gcd(55, 7).
\]

Now, \(55 = 7 \cdot 7 + 6 \), so

\[
\gcd(55, 7) = \gcd(7, 6).
\]

Again, \(7 = 1 \cdot 6 + 1 \), so

\[
\gcd(7, 6) = \gcd(6, 1) = 1.
\]

So \(\gcd(117, 55) = 1 \).

In Example 3 we used the "Euclidean Algorithm" for calculating \(\gcd(a, b) \).

Step 1: Arrange \(a \) and \(b \) so that \(a \geq b \).

Step 2: Write \(a = qb + r \), with \(0 \leq r < b \).

Step 3: If \(r = 0 \), then \(b \) divides \(a \), so \(\gcd(a, b) = b \). STOP!

If not then \(\gcd(a, b) = \gcd(b, r) \).

Step 4: Go to Step 2 to calculate \(\gcd(b, r) \).

Since the numbers get smaller after each iteration, you will eventually get an answer.

Example 4: Calculate \(\gcd(481, 1053) \)

Solution:

\[
\gcd(481, 1053) = \gcd(1053, 481)
\]

\[
1053 = 2 \cdot 481 + 91, \text{ so } \gcd(1053, 481) = \gcd(481, 91)
\]

\[
481 = 5 \cdot 91 + 26, \text{ so } \gcd(481, 91) = \gcd(91, 26)
\]

\[
91 = 3 \cdot 26 + 13, \text{ so } \gcd(91, 26) = \gcd(26, 13)
\]

\[
26 = 2 \cdot 13 + 0, \text{ so } \gcd(26, 13) = 13.
\]

We have \(\gcd(481, 1053) = 13 \).
Exercise Set 1

1. Calculate $\text{gcd}(129, 48)$ by
 a) Factoring 129 and 48.
 b) The Euclidean Algorithm.

2. Use the Euclidean Algorithm to calculate $\text{gcd}(427, 616)$

3. Use the Euclidean Algorithm to calculate $\text{gcd}(3551, 4399)$

4. Use the Euclidean Algorithm to calculate $\text{gcd}(7826, 6279)$

5. Use the Euclidean Algorithm to calculate $\text{gcd}(104723, 103093)$

Answers to Exercise Set 1:

1. 3
2. 7
3. 53
4. 91
5. 1
An application of the Euclidean Algorithm: Solving linear Diophantine equations.

Example 5: Find integers \(x\) and \(y\) such that \(1053x + 481y = 13\).

From the Euclidean Algorithm:

\[
\begin{align*}
1053 &= 2 \cdot 481 + 91 \\
481 &= 5 \cdot 91 + 26 \\
91 &= 3 \cdot 26 + 13 \\
26 &= 2 \cdot 13 + 0
\end{align*}
\]

(1) \hspace{1cm} (2) \hspace{1cm} (3) \hspace{1cm} (4)

Working backwards:

\[
\begin{align*}
13 &= 91 - 3 \cdot 26 \text{ from (3)} \\
 &= 91 - 3(481 - 5 \cdot 91) \text{ from (2)} \\
 &= 16 \cdot 91 - 3 \cdot 481 \\
 &= 16(1053 - 2(481)) - 3 \cdot 481 \text{ from (1)} \\
 &= 16(1053) - 35(481)
\end{align*}
\]

Therefore, a solution is \(x = 16, y = 35\). (Check!)

\[\square\]

Example 6: Find integers \(x\) and \(y\) such that \(1053x + 481y = 14\).

\[
1053x + 481y = 14
\]

Factoring \(\gcd(1053,481) = 13\) on the left:

\(13(37x + 81y) = 14\), which is not possible if \(x\) and \(y\) are integers!

Therefore, there is no solution.

Important Fact 2: \(ax + by = c\) has a solution if and only if \(\gcd(a, b)\) divides \(c\).
Exercise Set 2

1. Find an integer solution to $129x + 48y = 4$, or explain why one doesn’t exist.

2. Find an integer solution to $117x + 55y = 1$, or explain why one doesn’t exist.

3. Find an integer solution to $427x + 616y = 7$.

4. Find an integer solution to $3551x + 4399y = 53$.

5. Find an integer solution to $6279x + 7826y = 91$.

Answers to Exercise Set 2:

1. There is no solution since $\gcd(129, 48) = 3$, and 3 does not divide 4.

2. $(x, y) = (8, -17)$ is one (of many) solutions.

3. $(x, y) = (13, -9)$ is one (of many) solutions.

4. $(x, y) = (-26, 21)$ is one (of many) solutions.

5. $(x, y) = (5, -4)$ is one (of many) solutions.
What about solving $ax + by = c$ when c is not $\gcd(a, b)$?
We know from Important Fact 2, that if $\gcd(a, b)$ divides c, there is a solution.

Example 7: Find an integer solution to $1053x + 481y = 39$.

Since $\gcd(1053, 481) = 13$ and 13 divides 39, we know that there is a solution to this linear Diophantine equation.

We already know that $1053(16) + 481(-35) = 13$

Multiplying both sides by 3:
$3 \cdot 1053(16) + 3 \cdot 481(-35) = 3 \cdot 13$
And so
$1053(3 \cdot 16) + 481(3 \cdot (-35)) = 39$
Therefore,
$1053(48) + 481(-105) = 39$

Therefore, $x = 48$, $y = -105$ is a solution.

In general, how do we solve $ax + by = c$ when c is not $\gcd(a, b)$?

If $\gcd(a, b)$ does not divide c, then there is no solution.

If $\gcd(a, b)$ does divide c, then

1. Solve $ax + by = \gcd(a, b)$.
2. Multiply the x and y in the solution by $\frac{c}{\gcd(a, b)}$.