Problem:
Four pieces of lumber are placed in parallel positions, as shown, perpendicular to line M:

- Piece \(W \) is 5 m long
- Piece \(X \) is 3 m long and its left end is 3 m from line \(M \)
- Piece \(Y \) is 5 m long and is 2 m from line \(M \)
- Piece \(Z \) is 4 m long and is 1.5 m from line \(M \)

A single cut, perpendicular to the pieces of lumber, is made along the dotted line \(L \). The total length of lumber on each side of \(L \) is the same. What is the length, in metres, of the part of piece \(W \) to the left of the cut?
Inequalities:

$a < b$ means:
- a is strictly less than b
- a is to the left of b on the number line
- $b = a + p$ where p is some positive real number

Solving Inequalities in One Variable:

Rules for Inequalities:

1: Adding any number to both sides of an inequality preserves the inequality.
 If $a < b$, then $a + c < b + c$.

2: Multiplying or dividing both sides of an inequality by a positive number preserves the inequality.
 If $a < b$ and $c > 0$, then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$.

3: Multiplying both sides of an inequality by a negative number changes the direction of the inequality.
 If $a < b$ and $c < 0$, then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$.

4: If $0 < a < b$, then $a^2 < b^2$.

5: If $0 < a < b$, then $\frac{1}{a} > \frac{1}{b}$.
Problem Set

1. The average of a set of n integers is 10. If we remove the integer 2 from this set, the average of the remaining integers is 14. What is the value of n?

2. In a bin at the Cayley Convenience Store, there are 200 candies. Of these candies, 90% are black and the rest are gold. After Matilda eats some of the black candies, 80% of the remaining candies in the bin are black. How many black candies did Matilda eat?

3. The five expressions $2x + 1$, $2x - 3$, $x + 2$, $x + 5$ and $x - 3$ can be arranged in a different order so that the sum of the first three expressions is $4x + 3$ and the sum of the last three expressions is $4x + 4$. What is the middle expression in the new list?

4. Solve $5x - 2 \leq 3x - 10$ and sketch your solution.

5. Solve $10 - 7x < -4x - 9$ and sketch your solution.

6. Solve $-\frac{1}{2}(2 + 5x) \geq \frac{2}{3}(15 - 3x)$ and sketch your solution.

7. How many integer values of x satisfy $\frac{x-1}{3} < \frac{5}{7} < \frac{x+4}{5}$?

8. How many positive integers p satisfy $-1 < \sqrt{p} - \sqrt{100} < 1$?

9. If $-2 < x < 3$ then determine a and b in $a < 2x + 3 < b$.

10. What values of x satisfy the inequality $-3 < 5 - \frac{2}{x} < 3$? Sketch your solution.

11. Solve $2 - \frac{1}{x} < 3$ and sketch your solution.

12. Solve $\frac{2}{x} + 3 \geq 4$ and sketch your solution.

13. The front wheel of Georgina’s bicycle has a diameter of 0.75 metres. She cycled for 6 minutes at a speed of 24 kilometres per hour. How many complete rotations did the wheel make during this time?

14. A computer software retailer has 1200 copies of a new software package to sell. From past experience, she knows that:

- Half of them will sell right away at the original price she sets,
- Two-thirds of the remainder will sell later when the price is reduced by 40%, and
- The remaining copies will sell in a clearance sale at 75% off the original price.

In order to make a reasonable profit, the total sales revenue must be greater than or equal to $72 000. To the nearest cent, what is the smallest original price she should set?