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Part A

1. Since Zipporah is 7 years old and the sum of Zipporah’s age and Dina’s age is 51, then Dina is
51− 7 = 44 years old.
Since Dina is 44 years old and the sum of Julio’s age and Dina’s age is 54, then Julio is
54− 44 = 10 years old.

Answer: 10

2. Since the circular track has radius 60 m, its circumference is 2π · 60 m which equals 120π m.

Since Ali runs around this track at a constant speed of 6 m/s, then it takes Ali
120π m

6 m/s
= 20π s

to complete one lap.
Since Ali and Darius each complete one lap in the same period of time, then Darius also takes
20π s to complete one lap.
Since Darius runs at a constant speed of 5 m/s, then the length of his track is 20π s · 5 m/s or
100π m.
Since Darius’s track is in the shape of an equilateral triangle with side length x m, then its
perimeter is 3x m and so 3x m = 100π m and so x = 100π

3
.

Answer: x = 100π
3

3. Since 2a · 2b = 2a+b, then

32n = 2200 · 2203 + 2163 · 2241 + 2126 · 2277

= 2200+203 + 2163+241 + 2126+277

= 2403 + 2404 + 2403

= 2403 + 2403 + 2404

Since 2c + 2c = 2(2c) = 21 · 2c = 2c+1, then

32n = 2403+1 + 2404

= 2404 + 2404

= 2404+1

= 2405

Since (2d)e = 2de, then 32n = (25)n = 25n.
Since 32n = 2405, then 25n = 2405 which means that 5n = 405 and so n = 81.

Answer: n = 81
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4. For there to exist a pair of integers (x, y) with x2 ≤ y ≤ x + 6, it must be the case that
x2 ≤ x+ 6 and so x2 − x− 6 ≤ 0.
Now x2 − x− 6 = (x− 3)(x+ 2), so x2 − x− 6 ≤ 0 exactly when −2 ≤ x ≤ 3. (If we consider
the function f(x) = (x− 3)(x+ 2), whose graph is a parabola opening upwards, its values are
less than or equal to 0 between its roots.)
Therefore, any pair of integers (x, y) with x2 ≤ y ≤ x + 6 must have x equal to one of
−2,−1, 0, 1, 2, 3.
When x = −2, the original inequality becomes 4 ≤ y ≤ 4 and so y must equal 4. There is 1
pair in this case, namely (−2, 4).
When x = −1, we obtain 1 ≤ y ≤ 5 and so y must equal one of 1, 2, 3, 4, 5. There are 5 pairs
in this case.
When x = 0, we obtain 0 ≤ y ≤ 6 and so y must equal one of 0, 1, 2, 3, 4, 5, 6. There are 7 pairs
in this case.
When x = 1, we obtain 1 ≤ y ≤ 7. There are 7 pairs in this case.
When x = 2, we obtain 4 ≤ y ≤ 8. There are 5 pairs in this case.
When x = 3, we obtain 9 ≤ y ≤ 9 and so y must equal 9. There is 1 pair in this case.
In total, there are 1 + 5 + 7 + 7 + 5 + 1 = 26 pairs of integers that satisfy the inequality.

Answer: 26

5. Since 605 is the middle side length of the right-angled triangle, we suppose that the side lengths
of the triangle are a, 605, c for integers a < 605 < c. (Why do we not need to consider the cases
a = 605 or 605 = c?)
By the Pythagorean Theorem, knowing that c (the longest side length) must be the length of
the hypotenuse, we obtain a2 + 6052 = c2 and so c2 − a2 = 6052.
We want to determine the maximum possible length of the shortest side of the triangle.
In other words, we want to try to determine the maximum possible length of a which is less
than 605.
We note that c2 − a2 = 6052 exactly when (c+ a)(c− a) = 6052.
We note also that 605 = 5 · 121 = 5 · 112 and so 6052 = 52 · 114.
Therefore, we have (c+ a)(c− a) = 52 · 114. This means that c+ a and c− a are a divisor pair
of 52 · 114.
Since a and c are positive integers, then c+a > c−a. Note that c > a and so c+a > c−a > 0.
We make a table of the possible values for c + a and c − a, and use these to determine the
possible values of c and a

c+ a c− a 2c = (c+ a) + (c− a) c a = (c+ a)− c
52 · 114 = 366025 1 366026 183013 103012
5 · 114 = 73205 5 73210 36605 36600
52 · 113 = 33275 11 33286 16643 16632

114 = 14641 52 = 25 14666 7333 7308
5 · 113 = 6655 5 · 11 = 55 6710 3355 3300
52 · 112 = 3025 112 = 121 3146 1573 1452

113 = 1331 52 · 11 = 275 1606 803 528
5 · 112 = 605 5 · 112 = 605 1210 605 0

These are all of the possible factorizations of 6052, and so give all of the possible pairs (a, c)
that satisfy the equation.
Therefore, the maximum possible value of a that is less than 605 is 528.

Answer: 528
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6. Since square ABCD has side length 4, then its area is 42, which equals 16.
The area of quadrilateral PQRS, which we expect to be a function of k, equals the area of
square ABCD minus the combined areas of 4ABP , 4PCQ, 4QDR, and 4ARS.

Since
BP

PC
=

k

4− k
, then there is a real number x with BP = kx and PC = (4− k)x.

Since BP + PC = BC = 4, then kx+ (4− k)x = 4 and so 4x = 4 or x = 1.
Thus, BP = k and PC = 4− k.
Similarly, CQ = DR = k and QD = RA = 4− k.

4ABP is right-angled at B and so its area is 1
2
(AB)(BP ) = 1

2
(4k) = 2k.

4PCQ is right-angled at C and so its area is 1
2
(PC)(CQ) = 1

2
(4− k)k.

4QDR is right-angled at D and so its area is 1
2
(QD)(DR) = 1

2
(4− k)k.

To find the area of 4ARS, we first join R to P .

A B

CD

P

Q

R
S

Now 4ARP can be seen as having base RA = 4 − k and perpendicular height equal to the
distance between the parallel lines CB and DA, which equals 4.

Thus, the area of 4ARP is 1
2
(4− k)(4).

Now we consider 4ARP as having base AP divided by point S in the ratio k : (4− k).
This means that the ratio of AS : AP equals k : ((4− k) + k) which equals k : 4.

This means that the area of 4ARS is equal to
k

4
times the area of 4ARP . (The two triangles

have the same height – the distance from R to AP – and so the ratio of their areas equals the
ratio of their bases.)

Thus, the area of 4ARS equals
1
2
(4− k)(4) · k

4
= 1

2
k(4− k).

Thus, the area of quadrilateral PQRS is

16− 2k − 3 · 1
2
k(4− k) = 16− 2k − 3

2
· 4k + 3

2
k2

= 3
2
k2 − 2k − 6k + 16

= 3
2
k2 − 8k + 16

The minimum value of the quadratic function f(t) = at2 + bt + c with a > 0 occurs when

t = − b

2a
and so the minimum value of 3

2
k2 − 8k + 16 occurs when k = − −8

2(3/2)
= 8

3
.

Therefore, the area of quadrilateral PQRS is minimized when k = 8
3
.

Answer: k = 8
3
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Part B

1. (a) Since each of Rachel’s jumps is 168 cm long, then when Rachel completes 5 jumps, she
jumps 5× 168 cm = 840 cm.
Since each of Joel’s jumps is 120 cm long, then when Joel completes n jumps, he jumps
120n cm.
Since Rachel and Joel jump the same total distance, then 120n = 840 and so n = 7.

(b) Since each of Joel’s jumps is 120 cm long, then when Joel completes r jumps, he jumps
120r cm.
Since each of Mark’s jumps is 72 cm long, then when Mark completes t jumps, he jumps
72t cm.
Since Joel and Mark jump the same total distance, then 120r = 72t and so dividing by 24,
5r = 3t.
Since 5r is a multiple of 5, then 3t must also be a multiple of 5, which means that t is a
multiple of 5.
Since 11 ≤ t ≤ 19 and t is a multiple of 5, then t = 15.
Since t = 15, then 5r = 3 · 15 = 45 and so r = 9.
Therefore, r = 9 and t = 15.

(c) When Rachel completes a jumps, she jumps 168a cm.
When Joel completes b jumps, he jumps 120b cm.
When Mark completes c jumps, he jumps 72c cm.
Since Rachel, Joel and Mark all jump the same total distance, then 168a = 120b = 72c.
Dividing by 24, we obtain 7a = 5b = 3c.
Since 7a is divisible by 7, then 3c is divisible by 7, which means that c is divisible by 7.
Since 5b is divisible by 5, then 3c is divisible by 5, which means that c is divisible by 5.
Since c is divisible by 5 and by 7 and because 5 and 7 have no common divisor larger
than 1, then c must be divisible by 5 · 7 which equals 35.
Since c is divisible by 35 and c is a positive integer, then c ≥ 35.
We note that if c = 35, then 3c = 105 and since 7a = 5b = 105, we obtain a = 15 and
b = 21. In other words, c = 35 is possible.
Therefore, the minimum possible value of c is c = 35.
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2. (a) For the sequence
1

w
,
1

2
,
1

3
,
1

6
to be an arithmetic sequence, it must be the case that

1

2
− 1

w
=

1

3
− 1

2
=

1

6
− 1

3

Since
1

3
− 1

2
=

1

6
− 1

3
= −1

6
, then

1

2
− 1

w
= −1

6
and so

1

w
=

1

2
+

1

6
=

2

3
, which gives w =

3

2
.

(b) The sequence
1

y + 1
, x,

1

z + 1
is arithmetic exactly when x − 1

y + 1
=

1

z + 1
− x or

2x =
1

y + 1
+

1

z + 1
.

Since y, 1, z is a geometric sequence, then
1

y
=
z

1
and so z =

1

y
. Since y and z are positive,

then y 6= −1 and z 6= −1.

In this case,
1

y + 1
+

1

z + 1
=

1

y + 1
+

1
1

y
+ 1

=
1

y + 1
+

y

1 + y
=
y + 1

y + 1
= 1.

Since
1

y + 1
+

1

z + 1
= 1, then the sequence

1

y + 1
, x,

1

z + 1
is arithmetic exactly when

2x = 1 or x =
1

2
.

(c) Since a, b, c, d is a geometric sequence, then b = ar, c = ar2 and d = ar3 for some real
number r. Since a 6= b, then a 6= 0. (If a = 0, then b = 0.)

Since a 6= b, then r 6= 1. Note that
b

a
=
ar

a
= r and so we want to determine all possible

values of r.
Since a and b are both positive, then r > 0.

Since
1

a
,
1

b
,

1

d
is an arithmetic sequence, then

1

b
− 1

a
=

1

d
− 1

b
1

ar
− 1

a
=

1

ar3
− 1

ar
1

r
− 1 =

1

r3
− 1

r
(since a 6= 0)

r2 − r3 = 1− r2

0 = r3 − 2r2 + 1

0 = (r − 1)(r2 − r − 1)

Since r 6= 1, then r2 − r − 1 = 0.

By the quadratic formula, r =
1±

√
(−1)2 − 4(1)(−1)

2
=

1±
√

5

2
.

Since a and b are both positive, then r > 0 and so r =
1 +
√

5

2
.

This is the only possible value of r.
We can check that r satisfies the conditions by verifying that when a = 1 (for example)

and r =
1 +
√

5

2
, giving b =

1 +
√

5

2
, c =

(
1 +
√

5

2

)2

, and d =

(
1 +
√

5

2

)3

, then we do

indeed obtain
1

b
− 1

a
=

1

d
− 1

b
.
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3. (a) Since AS = ST = AT , then 4AST is equilateral.
This means that ∠TAS = ∠AST = ∠ATS = 60◦.
Join B to P , B to S, D to Q and D to S.

DB
CA

S

T

Q

P

Since AS is tangent to the circle with centre B at P , then BP is perpendicular to PS.
Since BP and BC are radii of the circle with centre B, then BP = BC = 1.
Consider 4SBP and 4SBC.
Each is right-angled (at P and C), they have a common hypotenuse BS, and equal side
lengths (BP = BC).
This means that 4SBP and 4SBC are congruent.
Thus, ∠PSB = ∠CSB = 1

2
∠AST = 30◦.

This means that 4SBC is a 30◦-60◦-90◦ triangle, and so SC =
√

3BC =
√

3.
Since ∠CSQ = 180◦−∠CSP = 180◦− 60◦ = 120◦, then using a similar argument we can
see that 4DSC is also a 30◦-60◦-90◦ triangle.
This means that CD =

√
3SC =

√
3 ·
√

3 = 3.
Since CD is a radius of the circle with centre D, then r = CD = 3.

(b) Solution 1
From the given information, DQ = QP = r.
Again, join B to P , B to S, D to Q, and D to S.
As in (a), 4SBP and 4SBC are congruent which means that SP = SC.
Using a similar argument, 4SDC is congruent to 4SDQ.
This means that SC = SQ.
Since SP = SC and SC = SQ, then SP = SQ.
Since QP = r, then SP = SQ = 1

2
r.

Suppose that ∠PSC = 2θ.
Since 4SBP and 4SBC are congruent, then ∠PSB = ∠CSB = 1

2
∠PSC = θ.

Since ∠QSC = 180◦ − ∠PSC = 180◦ − 2θ, then ∠QSD = ∠CSD = 1
2
∠QSC = 90◦ − θ.

Since 4SDQ is right-angled at Q, then ∠SDQ = 90◦ − ∠QSD = θ.
This means that 4SBP is similar to 4DSQ.

Therefore,
SP

BP
=
DQ

SQ
and so

1
2
r

1
=

r
1
2
r

= 2, which gives 1
2
r = 2 and so r = 4.



2019 Canadian Senior Mathematics Contest Solutions Page 8

Solution 2
From the given information, DQ = QP = r.
Join B to P and D to Q. As in (a), BP and DQ are perpendicular to PQ.
Join B to F on QD so that BF is perpendicular to QD.

DB CA

S

T

Q

P
F

This means that 4BFD is right-angled at F .
Also, since BPQF has three right angles, then it must have four right angles and so is a
rectangle.
Thus, BF = PQ = r and QF = PB = 1.
Since QD = r, then FD = r − 1.
Also, BD = BC + CD = 1 + r.
Using the Pythagorean Theorem in 4BFD, we obtain the following equivalent equations:

BF 2 + FD2 = BD2

r2 + (r − 1)2 = (r + 1)2

r2 + r2 − 2r + 1 = r2 + 2r + 1

r2 = 4r

Since r 6= 0, then it must be the case that r = 4.
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(c) As in Solution 1 to (b), 4SBP is similar to4DSQ and SP = SQ. Therefore,
SP

BP
=
DQ

SQ

or
SP

1
=

r

SP
which gives SP 2 = r and so SP =

√
r.

Thus, SP = SQ = SC =
√
r.

Next, 4APB is similar to 4AQD (common angle at A, right angle).

Therefore,
AB

BP
=
AD

DQ
and so

AB

1
=
AB +BD

r
and so AB =

AB + 1 + r

r
.

Re-arranging gives rAB = AB + 1 + r and so (r − 1)AB = r + 1 and so AB =
r + 1

r − 1
.

This means that AC = AB +BC = AB + 1 =
r + 1

r − 1
+ 1 =

(r + 1) + (r − 1)

r − 1
=

2r

r − 1
.

Next, draw the circle with centre O that passes through A, S and T and through point V
on the circle with centre D so that OV is perpendicular to DV .

D
B

CA

S

T

Q

P
V

O

W

Let the radius of this circle be R. Note that OS = AO = R.
Consider 4OSC.
This triangle is right-angled at C.
Using the Pythagorean Theorem, we obtain the following equivalent equations:

OS2 = OC2 + SC2

R2 = (AC − AO)2 + SC2

R2 = (AC −R)2 + SC2

R2 = AC2 − 2R · AC +R2 + SC2

2R · AC = AC2 + SC2

R =
AC

2
+
SC2

2AC

R =
2r

2(r − 1)
+

(
√
r)2

4r/(r − 1)

R =
r

r − 1
+
r − 1

4

Since OV is perpendicular to DV , then 4OVD is right-angled at V .
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Using the Pythagorean Theorem, noting that OV = R and DV = r, we obtain the
following equivalent equations:

OV 2 +DV 2 = OD2

R2 + r2 = (OC + CD)2

R2 + r2 = (AC − AO + CD)2

R2 + r2 =

(
2r

r − 1
−R + r

)2

R2 + r2 =

(
2r + r(r − 1)

r − 1
−R

)2

R2 + r2 =

(
r2 + r

r − 1
−R

)2

R2 + r2 =

(
r2 + r

r − 1

)2

− 2R

(
r2 + r

r − 1

)
+R2

2R

(
r2 + r

r − 1

)
=

(
r2 + r

r − 1

)2

− r2

2R

(
r(r + 1)

r − 1

)
=
r2(r + 1)2

(r − 1)2
− r2

2R =
r − 1

r(r + 1)
· r

2(r + 1)2

(r − 1)2
− r − 1

r(r + 1)
· r2

2R =
r(r + 1)

r − 1
− r(r − 1)

r + 1

Since R =
r

r − 1
+
r − 1

4
, we obtain:

2r

r − 1
+
r − 1

2
=
r(r + 1)

r − 1
− r(r − 1)

r + 1

Multiplying both sides by 2(r+1)(r−1), expanding, simplifying, and factoring, we obtain
the following equivalent equations:

4r(r + 1) + (r − 1)2(r + 1) = 2r(r + 1)2 − 2r(r − 1)2

(4r2 + 4r) + (r − 1)(r2 − 1) = 2r((r + 1)2 − (r − 1)2)

(4r2 + 4r) + (r3 − r2 − r + 1) = 2r((r2 + 2r + 1)− (r2 − 2r + 1))

(4r2 + 4r) + (r3 − r2 − r + 1) = 2r(4r)

r3 − 5r2 + 3r + 1 = 0

(r − 1)(r2 − 4r − 1) = 0

Now r 6= 1. (If r = 1, the circles would be the same size and the two common tangents
would be parallel.)
Therefore, r 6= 1 which means that r2 − 4r − 1 = 0.
By the quadratic formula,

r =
4±

√
(−4)2 − 4(1)(−1)

2
=

4±
√

20

2
= 2±

√
5

Since r > 1, then r = 2 +
√

5.


