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1. (a) The average of Aneesh’s first six test scores was
17 + 13 + 20 + 12 + 18 + 10

6
=

90

6
= 15.

(b) After Jon’s third test, his average score was 14, and so the sum of the scores on his first
three tests was 14× 3 = 42.
The sum of his scores on his first two tests was 17 + 12 = 29, and so the score on his third
test was 42− 29 = 13.

(We may check that the average of 17, 12 and 13 is
17 + 12 + 13

3
= 14.)

(c) Dina wrote six tests followed by n more tests, for a total of n + 6 tests.
After Dina’s first 6 tests, her average score was 14, and so the sum of the scores on her
first 6 tests was 14× 6 = 84.
Dina scored 20 on each of her next n tests, and so the sum of the scores on her next n
tests was 20n.
Therefore, the sum of the scores on these n + 6 tests was 84 + 20n.
After Dina’s n + 6 tests, her average score was 18, and so the sum of the scores on her
n + 6 tests was 18(n + 6).
Thus, 84 + 20n = 18(n + 6) or 84 + 20n = 18n + 108 or 2n = 24, and so n = 12.

2. (a) The distance from Botown to Aville is 120 km.

Jessica drove this distance at a speed of 90 km/h, and so it took Jessica
120

90
=

4

3
hours

or
4

3
× 60 = 80 minutes.

(b) The distance from Botown to Aville is 120 km.
The car predicted that Jessica would drive this distance at a speed of 80 km/h, and so it

predicted that it would take Jessica
120

80
=

3

2
hours or

3

2
× 60 = 90 minutes.

The ETA displayed by her car at 7:00 a.m. was 8:30 a.m..

(c) Jessica drove from 7:00 a.m. to 7:16 a.m. (for 16 minutes) at a speed of 90 km/h, and so

she travelled a distance of
16

60
× 90 = 24 km.

At 7:16 a.m., Jessica had a distance of 120 km− 24 km = 96 km left to travel.
The car predicted that Jessica would drive this distance at a speed of 80 km/h, and so it

predicted that it would take Jessica
96

80
=

6

5
hours or

6

5
× 60 = 72 minutes to complete

the trip.
The ETA displayed by her car at 7:16 a.m. was 72 minutes later or 8:28 a.m..

(d) As in part (b), the car predicted that it would take Jessica 90 minutes or 1.5 hours to
travel from Botown to Aville.
Let the distance that Jessica travelled at 100 km/h be d km, and so the distance that
Jessica travelled at 50 km/h was (120− d) km.

The time that Jessica drove at 100 km/h was
d

100
hours.

The time that Jessica drove at 50 km/h was
120− d

50
hours.

Since the time predicted by her car is equal to the actual time that it took Jessica to travel

from Botown to Aville, then
d

100
+

120− d

50
= 1.5.

Solving for d, we get d + 2(120− d) = 1.5× 100 or −d + 240 = 150, and so d = 90 km.
Therefore, Jessica drove a distance of 90 km at a speed of 100 km/h.
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3. (a) We are given that T1 = 1, T2 = 2 and T3 = 3.
Evaluating, we get

T4 = 1 + T1T2T3 = 1 + (1)(2)(3) = 7, and

T5 = 1 + T1T2T3T4 = 1 + (1)(2)(3)(7) = 43.

(b) Solution 1
Each term after the second is equal to 1 more than the product of all previous terms in
the sequence. Thus, Tn = 1 + T1T2T3 · · ·Tn−1.
For all integers n ≥ 2, we use the fact that Tn = 1 + T1T2T3 · · ·Tn−1 to get

RS = T 2
n − Tn + 1

= Tn(Tn − 1) + 1

= Tn(1 + T1T2T3 · · ·Tn−1 − 1) + 1

= Tn(T1T2T3 · · ·Tn−1) + 1

= T1T2T3 · · ·Tn−1Tn + 1

= Tn+1

= LS

Solution 2
For all integers n ≥ 2, we use the fact that Tn = 1 + T1T2T3 · · ·Tn−1 to get

LS = Tn+1

= 1 + T1T2T3 · · ·Tn−1Tn

= 1 + (T1T2T3 · · ·Tn−1)Tn

= 1 + (Tn − 1)Tn

= T 2
n − Tn + 1

= RS

(c) Using the result from part (b), we get Tn + Tn+1 = Tn + T 2
n − Tn + 1 = T 2

n + 1, for all
integers n ≥ 2.
Similarly,

TnTn+1 − 1 = Tn(T 2
n − Tn + 1)− 1

= T 3
n − T 2

n + Tn − 1

= T 2
n(Tn − 1) + Tn − 1

= (Tn − 1)(T 2
n + 1)

Since Tn + Tn+1 = T 2
n + 1 and T 2

n + 1 is a factor of TnTn+1 − 1, then Tn + Tn+1 is a factor
of TnTn+1 − 1 for all integers n ≥ 2.

(d) Using the result from part (b), we get T2018 = T 2
2017 − T2017 + 1.

Since T2017 is a positive integer greater than 1, then T 2
2017 − T2017 + 1 > T 2

2017 − 2T2017 + 1
and T 2

2017 − T2017 + 1 < T 2
2017.

That is, T 2
2017 − 2T2017 + 1 < T 2

2017 − T2017 + 1 < T 2
2017, and so (T2017 − 1)2 < T2018 < T 2

2017.

Since T2017− 1 and T2017 are two consecutive positive integers, then (T2017− 1)2 and T 2
2017

are two consecutive perfect squares, and so T2018 lies between two consecutive perfect
squares and thus is not a perfect square.
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4.(a)(i) By completing the square, the equations defining the two parabolas become

y = x2 − 8x + 17 = x2 − 8x + 16 + 1 = (x− 4)2 + 1, and

y = −x2 + 4x + 7 = −(x2 − 4x + 4) + 11 = −(x− 2)2 + 11.

Thus, the parabola defined by the equation y = x2 − 8x + 17 has vertex V1(4, 1), and the
parabola defined by the equation y = −x2 + 4x + 7 has vertex V2(2, 11).

(a)(ii) First, we determine the coordinates of the points of intersection P and Q.
When the two parabolas intersect,

x2 − 8x + 17 = −x2 + 4x + 7

2x2 − 12x + 10 = 0

x2 − 6x + 5 = 0

(x− 5)(x− 1) = 0,

and so the two parabolas intersect at P (5, 2) and Q(1, 10).
Next, we want to show why quadrilateral V1PV2Q is a parallelogram.
To do this, we will use the property that if the diagonals of a quadrilateral bisect each
other, then the quadrilateral is a parallelogram.

The midpoint of diagonal V1V2 is

(
4 + 2

2
,
1 + 11

2

)
or (3, 6), and the midpoint of diagonal

PQ is

(
5 + 1

2
,
2 + 10

2

)
or (3, 6).

Since the midpoint of each diagonal is the same point, (3, 6), then the diagonals bisect
each other and so quadrilateral V1PV2Q is a parallelogram.
(Note that we could have also shown that each pair of opposite sides of V1PV2Q is parallel.)

(b)(i) By completing the square, the equation defining the parabola y = −x2 + bx + c becomes

y = −x2 + bx + c

= −(x2 − bx) + c

= −(x2 − bx +
b2

4
− b2

4
) + c

= −(x2 − bx +
b2

4
) +

b2

4
+ c

= −(x− b

2
)2 +

b2

4
+ c.

The vertex of this parabola is V3

(
b

2
,
b2

4
+ c

)
and the vertex of the parabola defined by

the equation y = x2 is V4(0, 0).

First, we determine the conditions on b and c so that the points of intersection R and S
exist and are distinct from one another.
When the two parabolas intersect, −x2 + bx + c = x2 or 2x2 − bx− c = 0.
This equation has two distinct real roots when its discriminant is greater than 0, or when
b2 − 4(2)(−c) > 0.

The points of intersection, R and S, exist and are distinct from one another when c >
−b2

8
.

Next, we determine conditions on b and c so that each of R and S are distinct from both
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V3 and V4.
The roots of the equation 2x2 − bx − c = 0 are given by the quadratic formula, and so

x =
b±
√
b2 + 8c

4
.

We let the x-coordinate of R be x1 =
b +
√
b2 + 8c

4
and the x-coordinate of S be

x2 =
b−
√
b2 + 8c

4
.

Each of the points R and S is not distinct from V4 when
b±
√
b2 + 8c

4
= 0 or b = ∓

√
b2 + 8c

or b2 = b2 + 8c, and so c = 0.
Thus, we require that c 6= 0.

Similarly, each of the points R and S is not distinct from V3 when
b±
√
b2 + 8c

4
=

b

2
or

b±
√
b2 + 8c = 2b or ±

√
b2 + 8c = b or b2 + 8c = b2, and so c = 0.

As before, we require that c 6= 0.
(Note that since R and V4 lie on the same parabola, then if their x-coordinates are not
equal, then they are distinct points – that is, we need not consider their y-coordinates.
The same is true for points S and V4, R and V3, and S and V3.)

Finally, we require that the vertices of the parabolas, V3

(
b

2
,
b2

4
+ c

)
and V4(0, 0), be dis-

tinct from one another.
Vertices V3 and V4 are distinct provided that if their x-coordinates are equal, then their
y-coordinates are not equal (V3 and V4 lie on different parabolas and so we must consider
both x- and y-coordinates).

If
b

2
= 0 or b = 0, then

b2

4
+ c =

02

4
+ c = c, and since we have the requirement (from

earlier) that c 6= 0, then vertices V3 and V4 are certainly distinct when c 6= 0.

If the two conditions c >
−b2

8
and c 6= 0 are satisfied, then for all pairs (b, c), the points

R and S exist, and the points V3, V4, R, S are distinct.

(b)(ii) We begin by assuming that the conditions on b and c from part (b)(i) above are satisfied.
Thus, the points R and S exist, and the points V3, V4, R, S are distinct.
For quadrilateral V3RV4S to be a rectangle, it is sufficient to require that it be a parallel-
ogram that has at least one pair of adjacent sides that are perpendicular to each other.
From (b)(i), the parabolas intersect at R(x1, x

2
1) and S(x2, x

2
2) (R and S each lie on the

parabola y = x2, and thus the y-coordinates are x2
1 and x2

2, respectively).
Recall that x1 and x2 are the distinct real roots of the quadratic equation 2x2−bx−c = 0.

The sum of the roots of the general quadratic equation Ax2 +Bx+C = 0 is equal to
−B
A

,

and so x1 + x2 =
b

2
.

The product of the roots of the general quadratic equation Ax2 + Bx + C = 0 is equal

to
C

A
, and so x1x2 =

−c
2

.

First, we will show that quadrilateral V3RV4S is a parallelogram since its diagonals bisect
each other.
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The midpoint of diagonal V3V4 is

(
b
2

+ 0

2
,
b2

4
+ c + 0

2

)
or

(
b

4
,
b2

8
+

c

2

)
or

(
b

4
,
b2 + 4c

8

)
.

The midpoint of diagonal RS is

(
x1 + x2

2
,
x2
1 + x2

2

2

)
.

However, x1 + x2 =
b

2
and x2

1 + x2
2 = (x1 + x2)

2 − 2x1x2 =

(
b

2

)2

− 2

(
−c
2

)
, and so the

midpoint of RS is

(
b
2

2
,

(
b
2

)2
+ c

2

)
or

(
b

4
,
b2

8
+

c

2

)
or

(
b

4
,
b2 + 4c

8

)
.

Since the midpoint of diagonal V3V4 is equal to the midpoint of diagonal RS, then the
diagonals bisect each other, and so V3RV4S is a parallelogram.

Next, we require that any one pair of adjacent sides of quadrilateral V3RV4S be perpen-
dicular to each other. (This will mean that all pairs of adjacent sides are perpendicular.)

The slope of V4S is
x2
2 − 0

x2 − 0
= x2 since x2 6= 0 (S(x2, x

2
2) and V4(0, 0) are distinct points).

Similarly, the slope of V4R is
x2
1 − 0

x1 − 0
= x1 since x1 6= 0 (R(x1, x

2
1) and V4(0, 0) are distinct

points).
Sides V4S and V4R are perpendicular to each other if the product of their slopes, x1x2, is
equal to −1.

Since x1x2 =
−c
2

, then
−c
2

= −1, and so c = 2.

In addition to the condition that c = 2, the two conditions from part (b)(i), c >
−b2

8
and

c 6= 0, must also be satisfied.
Clearly if c = 2, then c 6= 0.

Further, when c = 2, c >
−b2

8
becomes 2 >

−b2

8
or b2 > −16 which is true for all real

values of b.
The points R and S exist, the points V3, V4, R, S are distinct, and quadrilateral V3RV4S
is a rectangle for all pairs (b, c) where c = 2 and b is any real number.


