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1. (a) Since 5 baskets of raisins fill 2 tubs, then 5× 6 = 30 baskets of raisins fill 2× 6 = 12 tubs.
Therefore, 12 tubs of raisins fill 30 baskets.

(b) Since 5 scoops of raisins fill 1 jar, then 5× 6 = 30 scoops of raisins fill 1× 6 = 6 jars.
Since 3 scoops of raisins fill 1 cup, then 3× 10 = 30 scoops of raisins fill 1× 10 = 10 cups.
Since 30 scoops fill 6 jars, and 30 scoops fill 10 cups, then 10 cups of raisins fill 6 jars.

(c) Solution 1
From part (b), we know that 10 cups of raisins fill 6 jars.
Thus, 10× 5 = 50 cups of raisins fill 6× 5 = 30 jars.
Since 30 jars of raisins fill 1 tub, then 50 cups of raisins fill 1 tub, or 50× 2 = 100 cups of
raisins fill 1× 2 = 2 tubs.
Since 2 tubs of raisins fill 5 baskets, then 100 cups of raisins fill 5 baskets.
This tells us that 100÷ 5 = 20 cups of raisins fill 5÷ 5 = 1 basket.

Solution 2
Since 5 baskets fill 2 tubs, then 2

5
tubs fill 1 basket.

Since 30 jars of raisins fill 1 tub, then 2
5
× 30 = 12 jars of raisins fill 2

5
tubs and so fill

1 basket.
Since 5 scoops of raisins fill 1 jar, then 12× 5 = 60 scoops of raisins fill 12 jars and so fill
1 basket.
Since 3 scoops of raisins fill 1 cup, then 20× 1 = 20 cups fill 20× 3 = 60 scoops and so fill
1 basket.
Therefore, 20 cups of raisins fill 1 basket.

2. (a) Since M is the midpoint of chord AB, then AM = 1
2
(AB) = 5.

Also, since M is the midpoint of chord AB, then OM is perpendicular to AB.
Using the Pythagorean Theorem in 4OMA, we get OM2 = OA2 − AM2

or OM2 = 132 − 52 = 169− 25 = 144, and so OM =
√

144 = 12 (since OM > 0).

(b) Let the circle have centre O and chord PQ, as shown.
Since the radius is 25, then OQ = 25.
The perpendicular distance from O to the chord is given by OR,
and so OR = 7.
In 4ORQ, the Pythagorean Theorem gives RQ2 = OQ2−OR2 or
RQ2 = 252 − 72 = 625− 49 = 576, and so RQ =

√
576 = 24 (since

RQ > 0). P
R

O
Q

Since OR is perpendicular to the chord PQ, then R is the midpoint of PQ, and so
PQ = 2(RQ) = 2(24) = 48.
Therefore, the length of the chord is 48.

(c) Join O to S and O to U , as shown.
The radius of the circle is 65, and so OS = OU = 65.
Since OM is perpendicular to chord ST , then M is the midpoint
of the chord and so MS = 1

2
(ST ) = 1

2
(112) = 56.

In4OMS, the Pythagorean Theorem gives OM2 = OS2−MS2 or
OM2 = 652−562 = 4225−3136 = 1089, and so OM =

√
1089 = 33

(since OM > 0).
Since MN = OM+ON = 72, then ON = 72−OM = 72−33 = 39.
In 4ONU , the Pythagorean Theorem gives NU2 = OU2 −ON2

S

T
M

N
U

VO

or NU2 = 652 − 392 = 4225 − 1521 = 2704, and so NU =
√

2704 = 52 (since NU > 0).



2016 Hypatia Contest Solutions Page 3

Finally, since ON is perpendicular to chord UV , then N is the midpoint of the chord and
so UV = 2(NU) = 2(52) = 104.
Therefore, the length of the chord UV is 104.

3. (a) Since 405 = 34 × 5, then 405 is divisible by 34 but is not divisible by 35.
Thus, f(405) = 4.

(b) First, we find all factors of 3 which exist in the product 1×2×3×4×5×6×7×8×9×10.
The multiples of 3 are the only numbers which contain factors of 3.
The multiples of 3 in the given product are 3, 6 and 9.
Rewriting the given product, we get

1× 2× 3× 4× 5× 6× 7× 8× 9× 10

= 1× 2× 3× 4× 5× (2× 3)× 7× 8× (3× 3)× 10

= 34 × (1× 2× 4× 5× 2× 7× 8× 10).

Since the product in parentheses does not include any factors of 3, then the largest power
of 3 which divides the given product is 34, and so f(1×2×3×4×5×6×7×8×9×10) = 4.

(c) First, we count the number of factors of 3 included in 100!.
Every multiple of 3 includes least 1 factor of 3.
The product 100! includes 33 multiples of 3 (since 33× 3 = 99).
Counting one factor of 3 from each of the multiples of 3 (these are 3, 6, 9, 12, 15, 18, . . . , 93, 96, 99),
we see that 100! includes at least 33 factors of 3.
However, each multiple of 32 = 9 includes a second factor of 3 (since 9 = 32, 18 = 32 × 2,
etc.) which was not counted in the previous 33 factors.
The product 100! includes 11 multiples of 9 (since 11×9 = 99), and thus there are at least
11 additional factors of 3 in 100!.
Similarly, 100! includes 3 multiples of 33 = 27, each of which contribute an additional
factor of 3 (these are 27 = 33, 54 = 33 × 2, and 81 = 34).
Finally, there is one multiple of 34 = 81 which contributes one more factor of 3.
Since 35 > 100, then 100! does not include any multiples of 35 and so we have counted all
possible factors of 3.
Thus, 100! includes exactly 33 + 11 + 3 + 1 = 48 factors of 3, and so 100! = 348 × t for
some positive integer t that is not divisible by 3.
Counting in a similar way, the product 50! includes 16 multiples of 3, 5 multiples of 9, and
1 multiple of 27, and thus includes 16 + 5 + 1 = 22 factors of 3.
Therefore, 50! = 322 × r for some positive integer r that is not divisible by 3.
Also, 20! includes 6 + 2 = 8 factors of 3, and thus 20! = 38 × s for some positive integer s
that is not divisible by 3.

Therefore, N =
100!

50!20!
=

348 × t

(322 × r)(38 × s)
=

348 × t

(330 × rs)
=

318 × t

rs
.

Since we are given that N is equal to a positive integer, then
318 × t

rs
is a positive integer.

Since r and s contain no factors of 3 and 318 × t is divisible by rs, then it must be the
case that t is divisible by rs.

In other words, we can re-write N =
318 × t

rs
as N = 318 × t

rs
where

t

rs
is an integer.

Since each of r, s and t does not include any factors of 3, then the integer
t

rs
is not
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divisible by 3.

Therefore, the largest power of 3 which divides
100!

50!20!
is 318, and so f(N) = 18.

(d) Since f(a) = 8, then the exponent of the largest power of 3 that divides a is 8.
That is, a = 38m for some positive integer m and 3 does not divide m.
Since f(b) = 7, then the exponent of the largest power of 3 that divides b is 7.
That is, b = 37n for some positive integer n and 3 does not divide n.
Substituting and simplifying, we get

a + b = 38m + 37n = 37(3m + n)

Since 3 divides 3m but 3 does not divide n, then 3 does not divide the sum 3m + n.
That is, 3m+n is not a multiple of 3 and so the largest power of 3 that divides a+ b is 37.
Therefore, f(a + b) = 7.

4. (a) (i) For every 10 cents that one restaurant’s price is higher than the other restaurant’s
price, it loses one customer to the other restaurant.
On Monday, LP charges $9.30− $7.70 = $1.60 more per pizza than what EP charges.
Therefore, LP loses 1.60

0.10
= 16 customers to EP and thus has 50− 16 = 34 customers.

(ii) The cost for LP to make each pizza is $5.00, and so LP’s profit is $9.30−$5.00 = $4.30
for each pizza sold.
On Monday, LP’s total profit is $4.30× 34 = $146.20.

(b) Solution 1
Let LP’s price per pizza on Tuesday be $L, where L > 0 and L is an integer multiple of
0.10.
If LP charges $L per pizza, then its profit is $(L− 5) per pizza sold.
We note that if L < 5, then LP’s profit per pizza sold is negative (that is, LP is losing
money on each pizza it sells).
Since EP charges $7.20 per pizza, then the number of customers that LP has is

50 +
7.20− L

0.10
.

We note that if L < 7.20 (LP charges less per pizza than EP charges), then
7.20− L

0.10
> 0

and LP will have more than 50 customers. In fact, LP gains
7.20− L

0.10
customers.

Similarly, if L > 7.20 (LP charges more per pizza than EP charges), then
7.20− L

0.10
< 0

and LP will have fewer than 50 customers. In fact, LP loses
L− 7.20

0.10
customers.

LP’s profit on Tuesday is given by the product of its number of customers and its profit
per pizza sold.

That is, LP’s profit in dollars, P , is P =

(
50 +

7.20− L

0.10

)
× (L− 5).

Simplifying, we get P =

(
5 + 7.2− L

0.10

)
× (L− 5) = 10(12.2− L)(L− 5).

Therefore, P is a quadratic function of L.
The graph of this quadratic function, P = 10(12.2 − L)(L − 5), is a parabola opening
downward and thus the maximum profit occurs at its vertex.
The zeros of this parabola occur when 12.2 − L = 0 (that is, when L = 12.2) and when
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L− 5 = 0 (that is, when L = 5).
The vertex of the parabola occurs on its axis of symmetry, which is the vertical line passing
through the midpoint of its zeros, L = 12.2 and L = 5.

That is, the maximum profit occurs when L =
12.2 + 5

2
=

17.2

2
= 8.60.

On Tuesday, LP should charge $8.60 per pizza to maximize their profit.

Solution 2
On Tuesday, EP charges $7.20 per pizza.
Suppose that, on Tuesday, LP charges $(7.20 + 0.10d) per pizza for some integer d. (Note
that LP’s price must be an integer multiple of 10 cents higher or lower than EP’s price.)
If d > 0, then LP will lose d customers to EP.
If d < 0, then LP will gain −d customers from EP.
In other words, on Tuesday, LP will have 50− d customers.
Since it costs LP $5.00 to make each pizza, then LP’s profit per pizza is equal to
$(7.20 + 0.10d)− $5.00 = $(2.20 + 0.10d).
Therefore, in dollars, LP’s profit on Tuesday is the product of its number of customers
and its profit per pizza sold, or P = (2.20 + 0.10d)(50− d) = 0.10(22 + d)(50− d).
Therefore, P is a quadratic function of d.
The graph of this quadratic function, P = 0.10(22 + d)(50 − d), is a parabola opening
downward and thus the maximum profit occurs at its vertex.
The zeros of this parabola occur when 22 + d = 0 (that is, when d = −22) and when
50− d = 0 (that is, when d = 50).
The vertex of the parabola occurs on its axis of symmetry, which is the vertical line passing
through the midpoint of its zeros, d = −22 and d = 50.

That is, the maximum profit occurs when d =
(−22) + 50

2
= 14.

On Tuesday, LP should charge $(7.20 + 0.10(14)) = $8.60 per pizza to maximize their
profit.

(c) Solution 1
Suppose that EP set its price per pizza at $E, where E > 0 and E is an integer multiple
of 0.20.
After EP sets its price at $E, LP maximizes its profit by setting its price per pizza at $L,
where L > 0 and L is an integer multiple of 0.10.
Let EP’s profit be PE and LP’s profit be PL.
First we determine the price per pizza, $L, that LP will choose in order to maximize its
profit, PL, given that LP knows that EP has set its price per pizza at $E.
LP’s profit per pizza sold is $(L− 5) and, using a similar method as in (b), its number of

customers is 50 +
E − L

0.10
.

Thus, LP’s total profit, in dollars, is given by PL =

(
50 +

E − L

0.10

)
× (L− 5).

Simplifying, we get PL =

(
5 + E − L

0.10

)
× (L− 5) = 10(5 + E − L)(L− 5).

We think about E as fixed and L as variable, making this a quadratic function in L.
The graph of this quadratic function, PL = 10(5 + E − L)(L − 5), is a parabola opening
downward and thus the maximum profit occurs at its vertex.
The zeros of this parabola occur when 5 + E − L = 0 (that is, L = 5 + E) and when
L− 5 = 0 (that is, L = 5).
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The vertex of the parabola occurs on its axis of symmetry, which is the vertical line passing
through the midpoint of its zeros, L = 5 + E and L = 5.

That is, the maximum profit for LP occurs when L =
5 + E + 5

2
=

10 + E

2
= 5 + 1

2
E.

(Since E is a multiple of 0.20, then L is a multiple of 0.10.)
Thus, if EP first sets its price per pizza at $E, then LP should charge $(5 + 1

2
E) per pizza

to maximize its profit.

Since EP realizes what LP is doing, we can assume that EP now knows that LP will set
their price per pizza at $(5 + 1

2
E).

Thus, EP may determine its price per pizza, $E, that will maximize its profit.

EP’s profit per pizza sold is $(E − 5) and its number of customers is 50 +
L− E

0.10
.

(Since L and E are both multiples of 0.10, then this number is an integer.)

Thus, EP’s total profit is given by PE =

(
50 +

L− E

0.10

)
× (E − 5).

Simplifying, we get PE =

(
5 + L− E

0.10

)
× (E − 5) = 10(5 + L− E)(E − 5).

Since L = 5 + 1
2
E, the quadratic function becomes PE = 10(5 + (5 + 1

2
E)−E)(E − 5), or

PE = 10(10− 1
2
E)(E − 5).

This is again a parabola opening downward and so its maximum profit occurs at its vertex.
The zeros of this parabola occur when E = 20 and when E = 5.

Thus, the maximum profit for EP occurs when E =
20 + 5

2
= 12.50.

However, since E must equal an integer multiple of 0.20, then E cannot equal $12.50.
Since the quadratic relation PE is quadratic in E and the resulting parabola opens down-
ward, then values of E closest to the vertex give the largest values corresponding values
of PE.
Therefore, to maximize EP’s profit, we choose the closest values to E = 12.50 that are
multiples of 20 cents.
These values are E = 12.40 (which gives L = 11.20), and E = 12.60 (which gives
L = 11.30).
We note that E = 12.40 and E = 12.60 are symmetric about the axis of symmetry,
E = 12.50, and thus give equal values of PE = 281.20. Further, there are no values of E
which satisfy the given conditions and for which PE is greater in value, since there are no
multiples of 20 cents between $12.40 and $12.50 or between $12.60 and $12.50.
When EP sets its price at E = 12.40, LP’s profit is PL = 10(5 + E − L)(L − 5) or
PL = 10(5 + 12.40− 11.20)(11.20− 5) = 10(6.20)(6.20) = 384.40.
When EP sets its price at E = 12.60, LP’s profit is PL = 10(5 + E − L)(L − 5) or
PL = 10(5 + 12.60− 11.30)(11.30− 5) = 10(6.30)(6.30) = 396.90.

To maximize its profit, EP could charge $12.40 or $12.60 per pizza, which result in profits
for LP of $384.40 and $396.90, respectively.

Solution 2
On Wednesday, suppose that EP charges $2e per pizza, where e is a multiple of 0.10.
Based on this fixed (but unknown) price, LP chooses its price on Wednesday to maximize
its profit.
Suppose that, on Wednesday, LP charges $(2e+0.10n) per pizza for some integer n. (Note
that LP’s price must be an integer multiple of 10 cents higher or lower than EP’s price.)
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As in (b), on Wednesday, LP will have 50− n customers.
Since it costs LP $5.00 to make each pizza, then LP’s profit per pizza is equal to
$(2e + 0.10n)− $5.00 = $(2e + 0.10n− 5).
Therefore, in dollars, LP’s profit on Wednesday is

PL = (2e+0.10n−5)(50−n) = 0.10(20e+n−50)(50−n) = −0.10n2+(10−2e)n+(100e−250)

We treat e as a constant and n as a variable. Therefore, PL is a quadratic function of n.
Since the coefficient of n2 is negative, the graph of this quadratic function is a parabola
opening downward and thus the maximum profit for LP occurs at its vertex.

The vertex occurs when n = − 10− 2e

2(−0.10)
= 50− 10e.

In this case, LP’s profit, in dollars, is

PL = 0.10(20e + (50− 10e)− 50)(50− (50− 10e)) = 0.10(10e)(10e) = 10e2

Now, on Wednesday, EP realizes what LP is doing and so sets its initial price, $2e, to
maximize EP’s profit (knowing that LP will pick its price afterwards to optimize LP’s
profit).
Since EP’s price is set at $2e per pizza, then its profit per pizza is $(2e− 5).
Since LP has 50 − n customers and there are 100 customers in total, then EP has
100 − (50 − n) = 50 + n = 50 + (50 − 10e) = 100 − 10e customers. (From above, we
can assume that n = 50− 10e.)
Therefore, in dollars, EP’s total profit on Wednesday is

PE = (100− 10e)(2e− 5) = −20e2 + 250e− 500 = −20(e2 − 12.5e + 25)

Completing the square, we obtain

PE = −20((e− 6.25)2 − 6.252 + 25) = −20(e− 6.25)2 + 281.25

This is the equation of a parabola opening downwards. Thus, the maximum value of PE

occurs when e = 6.25. However, we require that e be a multiple of 0.10.
To find the maximum value(s) of PE including this constraint, we take the closest values
of e to the vertex that are multiples of 0.10. These are e = 6.20 and e = 6.30.
Since e = 6.20 and e = 6.30 are symmetric about the vertex e = 6.25, then they give
the same profit PE, namely PE = 281.20. Since we have stayed as closed to the vertex as
possible, this is EP’s maximum possible profit given the constraints.
When e = 6.20, EP’s price is $12.40 and LP’s profit is $10e2 = $10(6.20)2 = $384.40.
When e = 6.30, EP’s price is $12.60 and LP’s profit is $10e2 = $10(6.30)2 = $396.90.
To maximize its profit, EP should charge $12.40 or $12.60 per pizza, which result in profits
for LP of $384.40 and $396.90, respectively.


