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Part A

1. Solution 1
We re-write each of the fractions using the common denominator 24:

2
3

= 16
24

3
4

= 18
24

5
6

= 20
24

5
8

= 15
24

11
12

= 22
24

The smallest of these is 15
24

= 5
8
.

Solution 2
We note that 2

3
= 1− 1

3
and 3

4
= 1− 1

4
and 5

6
= 1− 1

6
and 11

12
= 1− 1

12
.

The smallest of these four fractions is the one which is equal to 1 minus the largest of the unit
fractions 1

3
, 1
4
, 1
6
, 1
12

. This is 2
3

= 1− 1
3
.

So we need to compare 2
3

and 5
8
, the smaller of which will be the smallest of the five fractions

in the list.
Since 2

3
= 0.6 ≈ 0.667 and 5

8
= 0.625, then 5

8
is the smallest of the five fractions.

Answer: 5
8

2. Solution 1
From the graph, the numbers of students whose birthday in 2016 is on Sunday, Monday, Wednes-
day, Thursday, Friday, and Saturday are 4, 4, 2, 2, 8, and 6, respectively.
Therefore, the number of students whose birthday is not on a day beginning with “T” is
4 + 4 + 2 + 8 + 6 = 24.
Since 25% of the students have their birthday in 2016 on a day beginning with “T”, then
100%− 25% = 75% of the students have their birthday on a day not beginning with “T”.
Since 75% is equivalent to 3

4
, then 24 students represent 3

4
of the class, and so 8 students rep-

resent 1
4

or 25% of the class.
Since 2 students have their birthday on Thursday and 8 students (25% of the class) have their
birthday in 2016 on a day beginning with “T”, then the number of students with a birthday
on Tuesday is 8− 2 = 6.

Solution 2
Suppose that there were t students with their birthday on Tuesday.
Then there are t + 2 students born on a day beginning with “T”.
Also, there are 4 + 4 + t + 2 + 2 + 8 + 6 = 26 + t students in Ms. Gupta’s class.
We note that 25% is equivalent to 1

4
.

Since 25% of the students in Ms. Gupta’s class have their birthday in 2016 on a day beginning
with “T”, then the total number of students is 4 times the number of students with a birthday
on a day beginning with the letter “T”.
Thus, 26 + t = 4(t + 2).
This gives 26 + t = 4t + 8 or 18 = 3t and so t = 6.
In other words, there were 6 students with their birthday in 2016 on a Tuesday.

Answer: 6

3. Since there are 12 hurdles, then there are 11 gaps between the hurdles, each of length d metres.
The gap before the first hurdle is 50 metres and the gap after the last hurdle is 55 metres.
Since the race is 600 metres long, then 50 + 11d + 55 = 600 or 11d = 495 and so d = 45.

Answer: d = 45
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4. Solution 1
Dina’s machine works by taking an input, multiplying by 2 and then subtracting 3.
If we have the output and want to obtain the input, we must reverse these operations and so
we take the output, add 3 and then divide by 2.
Starting with the second output −35, we obtain −35 + 3 = −32 and then −32

2
= −16, which

was the second input.
Since the second input was the first output, then the first output was −16.
Starting with the first output −16, we obtain −16 + 3 = −13 and then −13

2
, which was the first

input.
Therefore, the first input was −13

2
or −6.5.

Solution 2
Starting with the first input x, Dina’s machine multiplies it by 2 to obtain 2x and then sub-
tracts 3 to obtain 2x− 3.
Dina inputs this output back into the machine.
The machine multiplies the input by 2 to obtain 2(2x − 3) = 4x − 6 and then subtracts 3 to
obtain 4x− 9.
Since the second output is −35, then 4x − 9 = −35 or 4x = −26 and so x = −26

4
= −13

2
or

−6.5.

Answer: −13
2

5. Solution 1
Since the distance from P ’s initial position to X along the circle is 8 m, then after travelling
8 m, P will be at X.
Since the circumference of the circle is 8 + 16 + 16 = 40 m, then after travelling any additional
multiple of 40 m, P will again be at X.
In other words, P is at X after travelling 8 m, 48 m, 88 m, 128 m, 168 m, and so on.
Similarly, since the distance from Q’s initial position to X along the circle is 16 m, then Q is
at X after travelling 16 m, 56 m, 96 m, 136 m, 176 m, and so on.
We now make two charts that list possible distances travelled by P and Q to arrive at X and
the corresponding times that these distances take. We are looking for the same lengths of time
to appear in both tables, as this would indicate times when P and Q are both at X.

Distance for P (m) Time (s)
(rounded to

nearest hundredth)
8 2.67
48 16
88 29.33
128 42.67
168 56
208 69.33
248 82.67
288 96

Distance for Q (m) Time (s)
(rounded to

nearest hundredth)
16 4.57
56 16
96 27.43
136 38.86
176 50.29
216 61.71
256 73.14
296 84.57
336 96
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In each case, we determine the time by taking the distance travelled and dividing by the ap-
propriate constant speed (3 m/s for P and 3.5 m/s for Q). For example, Q travels 56 m in

56 m

3.5 m/s
= 16 s.

From the tables, we see that P and Q meet at X after 16 s (having travelled 16 · 3 = 48 m and
16 · 3.5 = 56 m, respectively) and then again after 96 s (having travelled 96 · 3 = 288 m and
96 · 3.5 = 336 m, respectively).
Therefore, P and Q meet at X for the second time after 96 s.

Solution 2
The circumference of the circle is 8 + 16 + 16 = 40 m.
Since P starts 8 m from X, then P is at X after moving 8 + 40p metres, for each integer p ≥ 0.
(The variable p represents the number of complete times that P has moved around the circle
after reaching X for the first time.)
Similarly, since Q starts 16 m from X, then Q is at X after moving 16 + 40q metres, for each
integer q ≥ 0.
Suppose that P and Q meet at X after moving for t seconds. We want to determine the second
smallest possible value of t.
Since P moves at 3 m/s, then after t seconds, P has moved 3t metres.
Since Q moves at 3.5 m/s, then after t seconds, Q has moved 3.5t metres.
For P and Q to be at X after t seconds, we need 3t = 8 + 40p and 3.5t = 16 + 40q for some
integers p, q ≥ 0.
Multiplying the first of these equations by 7 and the second of these equations by 6, we obtain
21t = 56 + 280p and 21t = 96 + 240q.
Equating the expressions equal to 21t, we obtain 56 + 280p = 96 + 240q.
Manipulating this equation, we obtain the equivalent equations 280p = 40 + 240q and
7p = 1 + 6q.
Since we are looking for the second smallest possible value of t, then we look for the second
smallest pair of integers p and q with p, q ≥ 0 that satisfy this equation.
We do this by listing values of q and the corresponding values of 1 + 6q until we obtain the
second q for which 1 + 6q is a multiple of 7:

q 1 + 6q Multiple of 7?
1 7 Y
2 13 N
3 19 N
4 25 N
5 31 N
6 37 N
7 43 N
8 49 Y

Therefore, the second time at which P and Q meet at X is when p = 7 and q = 8.
When p = 7, we obtain 3t = 8 + 40p = 8 + 40(7) = 288 and so t = 96.

Answer: 96
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6. Every line is determined by any two points on the line.
We use L to denote the line with equation x + y = 1.
We use ` to denote the line with equation y = kx and `′ to denote the line obtained after
reflecting ` in L.
We determine the slope and y-intercept of `′ by finding two points on `′ and then using these
points to determine the slope, equation, and y-intercept.
The first point that we choose is the point, P , of intersection between the original line, `,
y = kx, and the line of reflection, L.
We note that the line of reflection can be re-written as y = −x + 1, which has slope −1.
Since k 6= −1, then ` is not parallel to L and so there is indeed a point of intersection.
Since P is on `, then its reflection will be on the resulting line.
Since P is on L, then its reflection will be itself.
In other words, P is also on `′.
To find the x-coordinate of P , we substitute y = kx into x + y = 1 to obtain x + kx = 1 or

x(k + 1) = 1 and so x =
1

k + 1
.

Since P is on `, which has equation y = kx, then y = k · 1

k + 1
=

k

k + 1
.

Thus, the coordinates of P are

(
1

k + 1
,

k

k + 1

)
.

Consider next the point O(0, 0) which is on `.
Let Q be the reflection of O in L.
Since Q is the reflection of O in L, then OQ is perpendicular to L.
Since L has slope −1, then any line perpendicular to L has slope
equal to − 1

−1 = 1.
Therefore, OQ has slope 1.
Since O is the origin (0, 0), then the line through O and Q has
equation y = x.
Thus, Q has coordinates (q, q) for some real number q.

y

x

Q

O (0, 0)

In addition to OQ being perpendicular to L, we also need the midpoint of OQ to lie on L.
The midpoint of O(0, 0) and Q(q, q) has coordinates (1

2
(0 + q), 1

2
(0 + q)) = (1

2
q, 1

2
q).

Since this point lies on the line with equation x + y = 1, then 1
2
q + 1

2
q = 1 or q = 1.

Thus, Q has coordinates (1, 1).

Therefore, `′ passes through Q(1, 1) and P

(
1

k + 1
,

k

k + 1

)
.

The slope of `′ is thus
1− k

k+1

1− 1
k+1

=
k+1
k+1
− k

k+1
k+1
k+1
− 1

k+1

=
1

k+1
k

k+1

=
1

k
. (Note that k 6= 0.)

Therefore, `′ has equation y =
1

k
x + b for some b.

Since Q(1, 1) lies on `′, then 1 =
1

k
+ b or b =

k − 1

k
.

Therefore, the slope of `′ is
1

k
and its y-intercept is

k − 1

k
.

Answer: Slope is
1

k
; y-intercept is

k − 1

k
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Part B

1. (a) 4ABC is right-angled at B.
Also, AB = 2 and BC = 3.
Since 4ABC is right-angled at B, the area of 4ABC is 1

2
AB ·BC = 1

2
(2)(3) = 3.

(b) We extend DE and GF to meet at P , as shown.

A

B C

D

E

F G

H

J

K

L

P

Q

RS

Then figure DEFGH can be viewed as rectangle DHGP with 4EPF removed.
In fact, DHGP is a square since DH = 5 and HG = 5.
Also, 4EPF is congruent to 4ABC, since it has height 2 and base 3.
Therefore, the area of DEFGH equals the area of DHGP minus the area of 4EPF ,
which equals 52 − 3 = 22.

(c) We draw lines through J , K and L that are horizontal and vertical (that is, that are along
the rows and columns of dots) to form rectangle QLRS, as shown above.
The area of 4JKL can be calculated by taking the area of rectangle QLRS and subtract-
ing the areas of 4JSK, 4LQJ and 4LRK.
Here, QLRS is a square with side length 5.
Also, 4JSK is congruent to 4ABC and so has area 3.
4LQJ is right-angled at Q and has LQ = 5 and JQ = 3.
Thus, its area is 1

2
LQ · JQ = 1

2
(5)(3) = 15

2
.

4LRK is right-angled at R and has LR = 5 and KR = 2.
Thus, its area is 1

2
LR ·KR = 1

2
(5)(2) = 5.

Finally, this tells us that the area of 4JKL is 25− 3− 15
2
− 5 = 19

2
.

(This can also be solved using a result called Pick’s Theorem, which involves counting the
number of grid dots that occur on the boundary and in the interior of the shape.)
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2. (a) One way of arranging these integers is 1, 3, 5, 2, 4.
The positive differences between the pairs of adjacent integers are 2, 2, 3, 2.
There are many other ways of arranging these integers so that the desired property is
true.
(We note that this property is equivalent to arranging the five integers so that no two
consecutive integers are adjacent.)

(b) (i) In any arrangement, the integer 10 must be placed next to at least one other integer.
From the list 1, 2, 3, . . . , 20, the integers “furthest away” from 10 are 1 and 20.
The positive differences between 10 and these integers are 9 and 10.
In other words, the positive difference between 10 and every other integer in the list
is less than or equal to 10.
Therefore, in any arrangement, there must be a positive difference that is at most 10,
and so N (the smallest of these differences) is less than or equal to 10, which means
that N cannot be 11 or larger.

(ii) Consider the following arrangement:

10, 20, 9, 19, 8, 18, 7, 17, 6, 16, 5, 15, 4, 14, 3, 13, 2, 12, 1, 11

The positive differences between the pairs of adjacent integers are

10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10

The smallest of these positive differences is 10.

(c) Consider the integer 14, which is the middle integer in the list 1, 2, 3, . . . , 25, 26, 27.
The maximum possible positive difference between 14 and another number from this list
is 13.
Therefore, in any arrangement, there must be a positive difference that is no larger than 13.
This tells us that N , the smallest of the positive differences, is less than or equal to 13.
To show that the maximum possible value of N is 13, we need to show that there actually
exists an arrangement with N = 13, since it is possible that, for some other reason, we
could not make a list with N = 13.
Here is such an arrangement:

14, 27, 13, 26, 12, 25, 11, 24, 10, 23, 9, 22, 8, 21, 7, 20, 6, 19, 5, 18, 4, 17, 3, 16, 2, 15, 1

The positive differences between the pairs of adjacent integers are

13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14, 13, 14

Therefore, the maximum possible value of N is 13.
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3. (a) To see why the Murray number of 6 is 12, we need to argue that

• there exist one or more distinct integers greater than 6 and less than or equal to
M = 12 such that the product of this list of integers times 6 is a perfect square, and

• M = 12 is the smallest M > 6 with this property.

First, we note that 6× 8× 12 = 576 = 242 and so the first bullet is satisfied.
Second, for 6 times a product of one or more integers to be a perfect square, this product
must include an odd number of factors of 3. This is because 6 includes exactly an odd
number of factors of 3 and a perfect square must include an even number of factors of
3. For a product to include an odd number of factors of 3, not all of the integers in the
product can include an even number of factors of 3, so one of the integers in the product
must include an odd number of factors of 3. Since the first two multiples of 3 larger than
6 are 9 and 12, and 9 includes an even number of factors of 3, then the product must
include a multiple of 3 that is at least as large as 12. In other words, we need to have
M ≥ 12.
These two statements explain why 12 is the Murray number of 6.

(b) The Murray number of 8 is 15.

While no justification is required for full marks on this part, we present a justification
modelled after the solution in (a).
First, 8× 10× 12× 15 = 14 400 = 1202 which is a perfect square.
The statement in the previous sentence shows that M ≤ 15.
Is it possible that M < 15?
Since 8 includes an odd number of factors of 2, then the Murray product must include
another integer with an odd number of factors of 2.
Since M ≤ 15 already, we only need to consider integers between 8 and 15 with an odd
number of factors of 2. These integers are 10 and 14.
If 10 is in the Murray product, then, because 10 includes an odd number of factors of 5,
we need to include another multiple of 5, which must be at least 15.
If 14 is in the Murray product, then, because 14 includes an odd number of factors of 7,
we would need to include another multiple of 7, which must be at least 21, which is too
large.
Therefore, it is not possible that M < 15, which tells us that M = 15.

(c) Let k be a positive integer and consider n = 8k2 = 2(2k)2.
We see that n cannot be a perfect square since (2k)2 is itself a perfect square and so
includes an even number of factors of 2, and so n = 8k2 = 2(2k)2 includes an odd number
of factors of 2.
The product 8k2 × 10k2 × 12k2 × 15k2 = 14 400k8 = (120k4)2 is a perfect square.
This shows that the Murray number of n = 8k2 is at most 15k2, which is less than
2n = 16k2.
Since there are infinitely many possible values for k, then there are infinitely many such
positive integers n, as required.
(There are many other ways to solve this problem.)
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(d) Solution 1
Let n be a positive integer.
First, we prove that the Murray number of n exists.
Since n × 4n = 4n2 = (2n)2, then there does exist a set of one or more distinct integers
larger than n whose product times n is a perfect square.
Thus, the Murray number M of n exists and satisfies n < M ≤ 4n. The fact that n× 4n
is a perfect square does not necessarily tell us that 4n is the Murray number. Since the
integer 4n has the correct property to be the Murray number, then the question that must
be answered is whether or not there is an integer smaller than 4n (but still larger than n)
with this property; if not, then 4n is the Murray number.

Next, we prove that the Murray number of n is greater than or equal to n + 3.
To do this, we prove that the Murray number of n cannot be less than n + 3.
Since the Murray number of n is greater than n, then the only possibilities less than n+ 3
are n + 1 and n + 2.

Case 1: Can the Murray number of n be n + 1?
If this were the case, then there would exist one or more distinct integers greater than n
and less than or equal to n + 1 whose product times n is a perfect square.
Since n + 1 is the only integer that satisfies these restrictions, then for n + 1 to be the
Murray number of n, it must be the case that n(n + 1) is a perfect square.
We note that n2 and (n + 1)2 = n2 + 2n + 1 are consecutive perfect squares.
Since n is a positive integer then, n2 = n× n < n(n + 1).
Also, n(n + 1) < (n + 1)(n + 1) = (n + 1)2.
In other words, n2 < n(n + 1) < (n + 1)2.
Since n(n + 1) is between two consecutive perfect squares, then n(n + 1) cannot itself be
a perfect square.
This tells us that n + 1 cannot be the Murray number of n.

Case 2: Can the Murray number of n be n + 2?
If this were the case, then there would exist one or more distinct integers greater than n
and less than or equal to n + 2 whose product times n is a perfect square.
Since n + 1 and n + 2 are the only integers that satisfy these restrictions, then for n + 2
to be the Murray number of n, it must be the case that n(n + 2) is a perfect square or
n(n + 1)(n + 2) is a perfect square. (The product must include n + 2 itself as a factor
otherwise the Murray number would be less than n+ 2. Also, the product either includes
n + 1 or it does not.)
Now, n2 < n(n + 2) and n(n + 2) = n2 + 2n < n2 + 2n + 1 = (n + 1)2.
Thus, n2 < n(n+ 2) < (n+ 1)2, and a similar argument to that in the previous case shows
that n(n + 2) is not a perfect square.
To conclude our argument, we must show that n(n+ 1)(n+ 2) cannot be a perfect square.
To show this, we will use the following three facts:

(F1) The difference between two positive perfect squares cannot equal 1.

Suppose a ≥ 1 and a2 is the smaller of a pair of positive perfect squares.
The closest larger perfect square is (a + 1)2, and so the smallest possible
difference between a2 and a larger perfect square equals (a + 1)2 − a2 or
a2 + 2a + 1− a2 or 2a + 1 which is at least 3 since a ≥ 1.
Therefore, the difference between two positive perfect squares cannot equal 1.

(F2) The largest possible common divisor that two of n, n + 1, n + 2 can share is 2.

Suppose that two integers are multiples of d.
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Then their difference must also be a multiple of d.
Among the three integers n, n+1, n+2, the possible differences between pairs
are 1 and 2.
Thus, the possible positive common divisors are the positive divisors of 1 and
2, which are 1 and 2.
Therefore, the largest possible common divisor that two of n, n + 1, n + 2 can
share is 2.

(F3) If the product of two or more positive integers is a perfect square and each pair of
these positive integers has no common divisor larger than 1, then each of these positive
integers must be a perfect square.

Consider a prime number p that is a factor of the product.
Since the product is a perfect square, then the product includes an even num-
ber of factors of p.
Now p cannot divide into more than one of the integers that make up the
product, so it must be included an even number of times in one of the integers
and cannot be included in any of the other integers.
Since this is true for any prime number p that is a factor of the product, then
each of integers that make up the product must be a perfect square.

We now consider n(n + 1)(n + 2) and assume that it is a perfect square.
If n is odd, then n + 1 is even and n + 2 is odd.
Since the maximum possible common divisor of any pair of these is 2 (by (F2)) and only
one of these integers is even, then no pair of these integers has a common divisor larger
than 1.
By (F3), each of n, n + 1, n + 2 must be a perfect square.
But by (F1), no two perfect squares differ by 1.
Thus, n cannot be odd.
If n is even, then n + 1 is odd and n + 2 is even.
By the arguments above, every prime factor other than 2 of one of these three integers is
not included in either of the other integers. Also, this factor must be included an even
number of times in the integer in which it appears.
Since n + 1 is odd, it has no factors of 2, and so must be a perfect square since all of its
other prime factors will occur in pairs.
By (F1), neither n nor n + 2 can be a perfect square.
Thus, n = 2b2 and n + 2 = 2c2 for some positive integers b and c. This is because each is
even, any other prime factor occurs in pairs, and neither can include an even number of
factors of 2 (otherwise it would be a perfect square).
In this case, we have 2 = (n + 2) − n = 2c2 − 2b2 and so c2 − b2 = 1, which contradicts
(F1).
Thus, n cannot be even, and so n(n + 1)(n + 2) cannot be a perfect square.

Therefore, the Murray number of n exists and cannot be n + 1 or n + 2, and so must be
greater than or equal to n + 3.

Solution 2
Let n be a positive integer.
First, we prove that the Murray number of n exists.
Since n × 4n = 4n2 = (2n)2, then there does exist a set of one or more distinct integers
larger than n whose product times n is a perfect square.
Thus, the Murray number M of n exists and satisfies n < M ≤ 4n. The fact that n× 4n
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is a perfect square does not necessarily tell us that 4n is the Murray number. Since the
integer 4n has the correct property to be the Murray number, then the question that must
be answered is whether or not there is an integer smaller than 4n (but still larger than n)
with this property; if not, then 4n is the Murray number.

To show that the Murray number of n is at least n+ 3, we first show that if j is a positive
integer, then neither j(j + 1) nor j(j + 2) can be a perfect square:

We note that j2 and (j + 1)2 = j2 + 2j + 1 are consecutive perfect squares.
Since j is a positive integer then, j2 = j × j < j(j + 1) < j(j + 2).
Also, j(j+1) < (j+1)(j+1) = (j+1)2 and j(j+2) = j2+2j < j2+2j+1 = (j+1)2

In other words, j2 < j(j + 1) < j(j + 2) < (j + 1)2.
Since j(j + 1) and j(j + 2) are between two consecutive perfect squares, then
neither j(j + 1) nor j(j + 2) can be a perfect square.

To prove that the Murray number of n is greater than or equal to n + 3, we prove that
the Murray number of n cannot be less than n + 3.
Since the Murray number of n is greater than n, then the only possibilities less than n+ 3
are n + 1 and n + 2.

Case 1: Can the Murray number of n be n + 1?
If this were the case, then there would exist one or more distinct integers greater than n
and less than or equal to n + 1 whose product times n is a perfect square.
Since n + 1 is the only integer that satisfies these restrictions, then for n + 1 to be the
Murray number of n, it must be the case that n(n + 1) is a perfect square.
Applying the fact above with j = n tells us that this cannot be true, and so n + 1 cannot
be the Murray number of n.

Case 2: Can the Murray number of n be n + 2?
If this were the case, then there would exist one or more distinct integers greater than n
and less than or equal to n + 2 whose product times n is a perfect square.
Since n + 1 and n + 2 are the only integers that satisfy these restrictions, then for n + 2
to be the Murray number of n, it must be the case that n(n + 2) is a perfect square or
n(n + 1)(n + 2) is a perfect square. (The product must include itself n + 2 otherwise the
Murray number would be less than n + 2. Also, the product either includes n + 1 or it
does not.)
Applying the fact above with j = n shows us that n(n + 2) cannot be a perfect square.
To conclude our argument, we must show that n(n+ 1)(n+ 2) cannot be a perfect square.
Suppose that n(n+ 1)(n+ 2) is a perfect square. (We will show that this cannot be true.)

If n is itself a perfect square, then
n(n + 1)(n + 2)

n
= (n+1)(n+2) is also a perfect square.

But this cannot be true, which we see by applying the fact above with j = n + 1.
Thus, n cannot itself be a perfect square in this case.
This means that there is a prime number p which divides n an odd number of times. (This
is true because an integer larger than 1 is a perfect square exactly when every prime factor
is included an even number of times.)
Since n(n + 1)(n + 2) is a perfect square, then p divides into n(n + 1)(n + 2) an even
number of times, and so p divides into n + 1 or into n + 2.
If n + 1 and n are both multiples of p, then their difference is a multiple of p. In other
words, 1 is a multiple of p, which is not possible.
Thus, n + 2 is a multiple of p. But again, p must divide into the difference between n + 2
and n, which is 2. In other words, we must have p = 2.



2016 Canadian Intermediate Mathematics Contest Solutions Page 13

This means that p = 2 is the only prime number that divides into each of n and n + 2 an
odd number of times, and so each of n and n + 2 equals 2 times a perfect square.
Thus, n = 2b2 and n + 2 = 2c2 for some positive integers b and c with b < c.
In this case, 2 = (n + 2)− n = 2c2 − 2b2, and so 1 = c2 − b2 = (c + b)(c− b).
Since c and b are positive integers with c > b and (c+ b)(c− b) = 1, then c+ b = c− b = 1,
which gives c = 1 and b = 0, which is a contradiction.
Finally, this means that n(n + 1)(n + 2) cannot be a perfect square, and so n + 2 is not
the Murray number of n.

Therefore, the Murray number of n exists and cannot be n + 1 or n + 2, and so must be
greater than or equal to n + 3.


