The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca

2014 Hypatia Contest

Wednesday, April 16, 2014
(in North America and South America)

Thursday, April 17, 2014
(outside of North America and South America)

Solutions

1. (a) Using the given definition, $8 \odot 7=\sqrt{8+4(7)}=\sqrt{36}=6$.
(b) Since $16 \odot n=10$, then $\sqrt{16+4 n}=10$ or $16+4 n=100$ (by squaring both sides) or $4 n=84$ and so $n=21$.
We check that indeed $16 \odot n=16 \odot 21=\sqrt{16+4(21)}=\sqrt{100}=10$.
(c) We first determine the value inside the brackets: $9 \odot 18=\sqrt{9+4(18)}=\sqrt{81}=9$.

So then $(9 \odot 18) \odot 10=9 \odot 10=\sqrt{9+4(10)}=\sqrt{49}=7$.
(d) Using the definition, $k \odot k=\sqrt{k+4 k}=\sqrt{5 k}$.

So we are asked to solve the equation $\sqrt{5 k}=k$.
Squaring both sides we get, $5 k=k^{2}$ and so $k^{2}-5 k=0$ or $k(k-5)=0$, and so $k=0$ or $k=5$.
Checking $k=0$, we obtain $k \odot k=0 \odot 0=\sqrt{0+4(0)}=\sqrt{0}=0=k$, as required.
Checking $k=5$, we obtain $k \odot k=5 \odot 5=\sqrt{5+4(5)}=\sqrt{25}=5=k$, as required.
Thus, the only possible solutions are $k=0$ and $k=5$.
2. (a) The song's position on week $1(w=1)$, is $P(1)=3(1)^{2}-36(1)+110=77$.
(b) The song's position is given by the quadratic function $P=3 w^{2}-36 w+110$, the graph of which is a parabola opening upward.
The minimum value of this parabola is achieved at its vertex.
To find the coordinates of the vertex, we may complete the square.

$$
\begin{aligned}
P & =3 w^{2}-36 w+110 \\
& =3\left(w^{2}-12 w\right)+110 \\
& =3\left(w^{2}-12 w+36-36\right)+110 \\
& =3\left(w^{2}-12 w+36\right)-108+110 \\
& =3(w-6)^{2}+2
\end{aligned}
$$

Therefore, the vertex of the parabola occurs at $w=6$ and $P=2$.
(i) The best position that the song "Recursive Case" reaches is position $\# 2$.
(ii) The song reaches its best position on week 6 .
(c) To determine the last week that "Recursive Case" appears on the Top 200 list, we want to find the largest w such that $P=3 w^{2}-36 w+110 \leq 200$.
Using the vertex form from part (b), we have $3(w-6)^{2}+2 \leq 200$ or $3(w-6)^{2} \leq 198$ or $(w-6)^{2} \leq 66$.
To determine the largest positive integer w such that $(w-6)^{2} \leq 66$, we want to find the largest square that is less than or equal to 66 .
Since $8^{2} \leq 66$ and $9^{2}>66$, then the largest w satisfies $w-6=8$ and so $w=14$.
The last week that "Recursive Case" appears on the Top 200 list is week 14.
To check this we note that,

$$
P(14)=3(14-6)^{2}+2=194 \leq 200 \text { but } P(15)=3(15-6)^{2}+2=245>200 .
$$

3. (a) We will denote the area of a figure using vertical bars. For example, $|\triangle B C E|$ is the area of $\triangle B C E$.
Since $A B C D$ has equal side lengths (it is a square) and $E A=E B=E C=E D$, then the 4 triangular faces of pyramid $A B C D E$ are congruent and so all have equal area. The surface area of pyramid $A B C D E$ is equal to the sum of the base area and the areas of the 4 triangular faces or
 $|A B C D|+|\triangle E A B|+|\triangle E B C|+|\triangle E C D|+|\triangle E D A|=|A B C D|+4|\triangle E A B|$.
Square $A B C D$ has side length 20 and so $|A B C D|=20 \times 20=400$.
To determine $|\triangle E A B|$, we construct altitude $E J$ as shown.
$\triangle E A B$ is isosceles and so $E J$ bisects $A B$ with $A J=J B=10$. $\triangle E A J$ is a right-angled triangle and so by the Pythagorean Theorem, $E A^{2}=A J^{2}+E J^{2}$ or $18^{2}=10^{2}+E J^{2}$, so then $E J=\sqrt{224}$ or $E J=4 \sqrt{14}$ (since $E J>0$).

The area of $\triangle E A B$ is $\frac{1}{2}(A B)(E J)=\frac{1}{2}(20)(4 \sqrt{14})=40 \sqrt{14}$.
Thus the surface area of $A B C D E$ is $|A B C D|+4|E A B|=400+4(40 \sqrt{14})=400+160 \sqrt{14}$.
(b) As in part (b), J is positioned such that $E J$ is an altitude of $\triangle E A B$ and so $E J=4 \sqrt{14}$. Since $E F$ is perpendicular to the base of the pyramid, then $E F$ is perpendicular to $F J$, as shown.
Further, F is the centre of the base $A B C D$ and J is the midpoint of $A B$, so then $F J$ is parallel to $C B$ and $F J=\frac{1}{2} \times C B=\frac{1}{2} \times 20=10$.

By the Pythagorean Theorem, $E J^{2}=E F^{2}+F J^{2}$ or $224=E F^{2}+100$ and so $E F=\sqrt{124}=2 \sqrt{31}($ since $E F>0)$.
Therefore, the height $E F$ of the pyramid $A B C D E$ is $2 \sqrt{31}$.
(c) Points G and H are the midpoints of $E D$ and $E A$, respectively, and so $E G=G D=E H=H A=9$.
Thus, $G H$ is a midsegment of $\triangle E D A$ and so $G H$ is parallel to $D A$ and $G H=\frac{1}{2} \times D A=10$. (Note that this result follows from the fact that $\triangle E G H$ is similar to $\triangle E D A$. Can you prove this?)
Since $G H$ is parallel to $D A$ and $D A$ is parallel to $C B$, then $G H$ is parallel to $C B$.
That is, quadrilateral $B C G H$ (whose area we are asked to find) is a trapezoid.
To determine the area of trapezoid $B C G H$, we need the lengths of the parallel sides $(G H=10$ and $C B=20)$ and we need the perpendicular distance between these two parallel sides.
We will proceed by showing that $H T$ (in the diagram below) is such a perpendicular height of the trapezoid and also by determining its length.
Join H to I, the midpoint of $E B$, so that $H I$ is a midsegment of $\triangle E A B$ with $H I=10$.
Position P on the base of the pyramid such that $H P$ is perpendicular to the base.
Similarly, position M on the base such that $I M$ is perpendicular to the base.
Let $M P$ extended intersect the edge $B C$ at T and the edge $A D$ at K, as shown.

By symmetry, $H P=I M$ and so $H P M I$ is a rectangle with $P M=H I=10$.
Further, since $A B$ is parallel to $H I$ and $H I$ is parallel to $K T$ (both are perpendicular to $H P$ and $I M$), then $A B$ is parallel to $K T$. So then $A B T K$ is a rectangle and $K T=A B=20$.
Also by symmetry, $P M$ is centred on line segment $K T$ such that $K P=M T=\frac{20-10}{2}=5$ ($E A=E B$ and E lies vertically above the centre of the square base).
Therefore $P T=P M+M T=10+5=15$.
Next, let the midpoint of $H I$ be L and position N on the base of the pyramid such that $L N$ is perpendicular to the base.
Since F is the centre of the square and J is the midpoint of edge $A B$, then $F J$ passes through N.
Since $\triangle E F J$ is similar to $\triangle L N J$ (by $A A \sim$), then $\frac{L N}{E F}=\frac{L J}{E J}=\frac{1}{2}$ (since $H I$ is a midsegment of $\triangle E A B$).

Therefore, $L N=\frac{1}{2}(E F)=\frac{1}{2}(2 \sqrt{31})=\sqrt{31}$.
Since $H I$ is parallel to the base of the pyramid, $A B C D$, then $H P=L N=\sqrt{31}$ (both are perpendicular to the base).
In right-angled $\triangle H P T, H T^{2}=H P^{2}+P T^{2}=(\sqrt{31})^{2}+15^{2}$.
So $H T^{2}=256$ and $H T=16$ (since $H T>0$).
Since the plane containing $\triangle H P T$ is perpendicular to the base $A B C D$, then $H T$ is perpendicular to $B C$.
That is, $H T$ is the height of trapezoid $B C G H$.
Finally, $|B C G H|=\frac{H T}{2}(G H+C B)=\frac{16}{2}(10+20)=240$.

4. (a) If $(4, y, z)$ is an APT, then $4^{2}+y^{2}=z^{2}+1$ or $z^{2}-y^{2}=15$ and so $(z-y)(z+y)=15$.

Since y and z are positive integers, then $(z+y)$ is a positive integer and thus $(z-y)$ is also a positive integer (since the product of the two factors is 15).
That is, $(z-y)$ and $(z+y)$ are the possible pairs of factors of 15 , of which there are two: 1 and 15 , and 3 and 5 .
Since $z+y>z-y$, we have the following two systems of equations to solve:

$$
\begin{array}{ll}
z-y=1 & z-y=3 \\
z+y=15 & z+y=5
\end{array}
$$

Adding the first pair of equations, we get $2 z=16$ or $z=8$ and so $y=7$.
Adding the second pair of equations, we get $2 z=8$ or $z=4$ and so $y=1$.
Since $y>1$, this second solution is not an APT.
The only APT with $x=4$ is $(4,7,8)$.
(b) Let positive integers u, v, w be the lengths of the sides of $\triangle U V W$ (with side length u opposite vertex U, v opposite V, and w opposite W).
Without loss of generality, assume (u, v, w) forms an APT such that $u^{2}+v^{2}=w^{2}+1$ with $u>1$ and $v>1$.
The area of $\triangle U V W$ is given by $A=\frac{1}{2} u v \sin W \quad(\star)$ (we will derive this formula at the end of the solution).
Assume that this area, A, is an integer.
In $\triangle U V W$, the cosine law gives $w^{2}=u^{2}+v^{2}-2 u v \cos W$ or $\cos W=\frac{u^{2}+v^{2}-w^{2}}{2 u v}$.

However, (u, v, w) is an APT and thus $u^{2}+v^{2}=w^{2}+1$ and so $u^{2}+v^{2}-w^{2}=1$.
Substituting, we get $\cos W=\frac{1}{2 u v}$ and $\operatorname{since} \sin ^{2} W=1-\cos ^{2} W$, then $\sin ^{2} W=1-\left(\frac{1}{2 u v}\right)^{2}$.
Squaring (\star) and substituting for $\sin ^{2} W$, we get $A^{2}=\frac{1}{4} u^{2} v^{2}\left(1-\left(\frac{1}{2 u v}\right)^{2}\right)$.
Simplifying, this last equation we get $A^{2}=\frac{1}{4} u^{2} v^{2}\left(\frac{(2 u v)^{2}-1}{(2 u v)^{2}}\right)$ or $A^{2}=\frac{1}{4} u^{2} v^{2}\left(\frac{(2 u v)^{2}-1}{4 u^{2} v^{2}}\right)$ or $16 A^{2}=(2 u v)^{2}-1$ and so $4 u^{2} v^{2}-16 A^{2}=1$.
The left side of this equation has a common factor of 4 and so is an even integer for all integers u, v, A.
However, the right side of the equation is 1 (an odd integer) and so this equation has no solutions.
Our assumption that A is an integer is false and thus the area of any triangle whose sides lengths form an APT is not an integer.

Derivation of $A=\frac{1}{2} u v \sin W$
 at T.
In this case, $\triangle U V W$ has height $V T$ and base $U W$.
In right-angled $\triangle V W T$, we have $\sin W=\frac{V T}{V W}$ and so $V T=u \sin W$.
(Note that if $\angle W$ is obtuse, then height $V T$ lies outside the triangle and we have $\sin \left(180^{\circ}-W\right)=\frac{V T}{V W}$ and so $\left.V T=u \sin W \operatorname{since} \sin \left(180^{\circ}-W\right)=\sin W\right)$.
Thus, the area of $\triangle U V W$ is $\frac{1}{2}(U W)(V T)=\frac{1}{2} u v \sin W$.
(c) Since $(5 t+p, b t+q, c t+r)$ is an APT, then $(5 t+p)^{2}+(b t+q)^{2}=(c t+r)^{2}+1$.

Expanding, we get $25 t^{2}+10 p t+p^{2}+b^{2} t^{2}+2 b q t+q^{2}=c^{2} t^{2}+2 c r t+r^{2}+1$, or $\left(25+b^{2}\right) t^{2}+(10 p+2 b q) t+\left(p^{2}+q^{2}\right)=c^{2} t^{2}+2 c r t+\left(r^{2}+1\right)$.
Each side of this equation is a quadratic polynomial in the variable t.
Since this equation is true for all positive integers t, then the corresponding coefficients on the left side and the right side are equal.
That is,

$$
\begin{align*}
25+b^{2} & =c^{2} \tag{1}\\
10 p+2 b q & =2 c r \tag{2}\\
p^{2}+q^{2} & =r^{2}+1 \tag{3}
\end{align*}
$$

Equation (1) is the Pythagorean relationship, and since b, c are positive integers then the Pythagorean triple $(5,12,13)$ satisfies (1) with $b=12$ and $c=13$.
(These are in fact the only values of b and c that work but we don't need to show this.)
Substituting b and c into (2) and simplifying we get $5 p+12 q=13 r$ (4).
Squaring equation (4), we get $25 p^{2}+120 p q+144 q^{2}=169 r^{2} \quad$ (5).
From equation (3), we get $r^{2}=p^{2}+q^{2}-1$, and substituting this into (5) gives $25 p^{2}+120 p q+144 q^{2}=169\left(p^{2}+q^{2}-1\right)$ or $144 p^{2}-120 p q+25 q^{2}=169$ or $(12 p-5 q)^{2}=169$ and so $12 p-5 q= \pm 13$.
We search for positive integers p and q with $p \geq 100$ satisfying $12 p-5 q= \pm 13$ or $5 q=12 p \pm 13$.

Since $12 p$ is even for all integers p and 13 is odd, then $12 p \pm 13$ is odd and so $5 q$ must also be odd.
The units digit of $5 q$ is either 0 or 5 for all positive integers q and since $5 q$ is odd, then its units digit is 5 .
The units digit of $5 q-13$ is 2 and the units digit of $5 q+13$ is 8 , and so the units digit of $12 p$ is either 2 or 8 (since $12 p=5 q \pm 13$).
A value of $p \geq 100$ such that $12 p$ has units digit 2 is $p=101$.
Substituting, we get $12(101)=5 q-13$ or $5 q=1225$ and so $q=245$.
Substituting p and q into (4) gives $r=265$.
A value of $p \geq 100$ such that $12 p$ has units digit 8 is $p=104$.
Substituting, we get $12(104)=5 q+13$ or $5 q=1235$ and so $q=247$.
Substituting p and q into (4) gives $r=268$.
Therefore, two possible 5-tuples (b, c, p, q, r) satisfying the given conditions are $(12,13,101,245,265)$ and $(12,13,104,247,268)$.
(Note that there are an infinite number of possible solutions.)

