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1. (a) The three angles shown in the pie chart are (2x)◦, (3x)◦ and 90◦.
Since these three angles form a complete circle, then (2x)◦+(3x)◦+90◦ = 360◦, or 5x = 270
and so x = 54.

(b) The ratio of the number of bronze medals to the number of silver medals to the number
of gold medals is equal to the ratio of the sector angles, (2x)◦ to (3x)◦ to 90◦, respectively.
Since x = 54, then the required ratio is 2(54) : 3(54) : 90 or 108 : 162 : 90.
Dividing each term by 18 the ratio becomes 6 : 9 : 5, which is written in lowest terms.

(c) Since the ratio of the number of bronze to silver to gold medals is 6 : 9 : 5, let the number
of bronze, silver and gold medals in the trophy case be 6x, 9x and 5x respectively.
Since the total number of medals in the trophy case is 80, then 6x + 9x + 5x = 80 or
20x = 80 and so x = 4.
Thus, there are 6× 4 = 24 bronze medals, 9× 4 = 36 silver medals, and 5× 4 = 20 gold
medals in the trophy case.

(d) The trophy case begins with 24, 36 and 20 bronze, silver and gold medals, respectively.
Recall that the number of medals is in the ratio 6 : 9 : 5.
For the ratio of the final number of medals to remain unchanged, we claim that the number
of medals added by the teacher must also be in the ratio 6 : 9 : 5.
(We will prove this claim is true at the end of the solution.)
Since 6 : 9 : 5 is in lowest terms, the smallest number of medals that the teacher could
have added is 6 bronze, 9 silver and 5 gold.
Therefore, the smallest number of medals that could now be in the trophy case is
80 + 6 + 9 + 5 or 100 medals.
We note that the number of bronze, silver and gold medals is now 30, 45 and 25, which is
still in the ratio 6 : 9 : 5.

Proof of Claim: Let the number of bronze, silver and gold medals added be b, s and g
respectively. When these are added to the existing medals, the number of bronze, silver
and gold medals becomes (24 + b), (36 + s) and (20 + g). The claim is that for the new
ratio, (24 + b) : (36 + s) : (20 + g), to remain unchanged (that is, to equal 24 : 36 : 20),
then b : s : g must equal 6 : 9 : 5. If (24 + b) : (36 + s) : (20 + g) = 24 : 36 : 20, then
36 + s

24 + b
=

36

24
and

20 + g

36 + s
=

20

36
. From the first equation, 24(36) + 24s = 36(24) + 36b and

so 24s = 36b or
s

b
=

36

24
=

9

6
. Similarly, from the second equation we can show that

g

s
=

5

9
. Thus, b : s : g = 6 : 9 : 5 as claimed.

2. (a) Solution 1
Each of the 200 passengers who checked exactly one bag is charged $20 to do so.
Each of the 45 passengers who checked exactly two bags is charged $20 for the first bag
plus $7 for the second bag, or $27 in total for the two bags.
Thus, the total charge for all checked bags is (200× $20) + (45× $27) or $5215.

Solution 2
All 245 passengers checked at least one bag.
They were each charged $20 to check this first bag.
The 45 passengers who checked a second bag were each charged an additional $7 to do so.
Thus, the total charge for all checked bags is (245× $20) + (45× $7) or $5215.
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(b) Solution 1
Since each of the 245 passengers checked at least one bag, then the total baggage fees
collected for the first bag is 245× $20 = $4900.
A total of $5173− $4900 = $273 in baggage fees remains to be collected.
Since all passengers checked exactly one or exactly two bags, then the remaining $273 in
baggage fees is collected from the passengers who checked a second bag.
The cost to check a second bag is $7.
Thus, the number of passengers who checked exactly two bags is

273

7
= 39.

Solution 2
Let the number of passengers who checked exactly one bag be n.
Since there were 245 passengers on board, and each checked exactly one bag or exactly
two bags, then the remaining (245− n) passengers checked exactly two bags.
Each of the n passengers who checked exactly one bag is charged $20 to do so.
Each of the (245−n) passengers who checked exactly two bags is charged $20 for the first
bag plus $7 for the second bag, or $27 in total for the two bags.
Since the total charge for all checked bags is $5173, then (n×20)+((245−n)×27) = 5173.
Solving, 20n + 6615− 27n = 5173 or 1442 = 7n, and so n = 206.
That is, 245− n = 245− 206 = 39 passengers checked exactly two bags.

Solution 3
All 245 passengers checked at least one bag.
They were each charged $20 to check this first bag.
Let the number of passengers who checked exactly two bags be m.
The m passengers who checked a second bag were each charged an additional $7 to do so.
Thus, the total charge for all checked bags is (245× $20) + (m× $7), so 4900 + 7m = 5173
or 7m = 273 and m = 39. Therefore, 39 passengers checked exactly two bags.

(c) Assume that each of the 245 passengers checked at most two bags.
The charge to check exactly two bags is $27, so in this case the total baggage fees collected
could not have exceeded 245× $27 = $6615.
Since $6825 (which is greater than $6615) was collected in baggage fees on this third flight,
then at least one passenger must have checked at least three bags.
(It is possible to have baggage fees total $6825 if 215 passengers check exactly 2 bags, and
30 passengers check exactly 3 bags.
Here, the total baggage fees collected would be (215× $27) + (30× $34) = $6825.)

(d) Assume that each passenger (of which there are at most 245), checked at most two bags.
Let the number of passengers who checked exactly one bag be a and the number of pas-
sengers who checked exactly two bags be b.
While it may be the case that there are passengers who checked no bags, they don’t con-
tribute to the $142 collected and so we may ignore them.
Each of the a passengers who checked exactly one bag is charged $20, while each of the b
passengers who checked exactly two bags is charged $27.
Since the total fees collected was $142, then 20a + 27b = 142.

Solving for a we get, a =
142− 27b

20
and since both a and b must be non-negative integers,

we systematically try values for b in the table below to see if any gives a non-negative
integer value for a. Since 27b is at most 142, but 27(5) = 135 and 27(6) = 162, then b is
at most 5 (27b is larger than 162 when b is larger than 6).
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Value of b Calculation of a

0 a = 142−27(0)
20

= 7.1

1 a = 142−27(1)
20

= 5.75

2 a = 142−27(2)
20

= 4.4

3 a = 142−27(3)
20

= 3.05

4 a = 142−27(4)
20

= 1.7

5 a = 142−27(5)
20

= 0.35

Each of the values of a calculated above is not a non-negative integer.
Thus, there are no non-negative integers a and b that make 20a + 27b = 142.
Therefore, there is no combination of passengers who check at most two bags such that
the baggage fees collected total $142.
Therefore, there must be at least one passenger who checked at least 3 bags.
(It is possible to have baggage fees total $142 if 4 passengers check exactly 2 bags,
and 1 passenger checks exactly 3 bags. Here, the total baggage fees collected would be
(4× $27) + (1× $34) = $142.)

3. (a) Solution 1
The cards numbered 1 and 7 are in Emily’s set and since 1 + 7 = 8, then we have found
one pair that she can select.
To maintain a sum of 8, we must decrease 7 by 1 when increasing 1 by 1.
That is, the cards numbered 2 and 6 have a sum of 8 and both are in Emily’s set so we
have found a second pair that she can select.
Repeating the process again, we get the third pair of cards numbered 3 and 5.
The 3 pairs that Emily can select from her set, each having a sum of 8, are (1, 7), (2, 6)
and (3, 5).
(Note that an attempt to repeat the process one more time gives (4, 4), however there is
only 1 card numbered 4 in Emily’s set.)

Solution 2
If we let the smaller card be numbered a and the larger card be numbered b, then a+b = 8
or b = 8− a.
Since a < b, then a < 8− a or 2a < 8 and so a < 4.
Since a ≥ 1, then the only possible values for a are 1, 2, 3.
Thus, the three pairs having a sum of 8 are (1, 7), (2, 6) and (3, 5).

(b) Solution 1
As in part (a), we first attempt to use the card numbered 1 (the smallest numbered card
in the set) to form a pair whose sum is 13.
However, the largest number that we can select to pair 1 with is 10, and this gives a sum
of 1 + 10 = 11 which is less than the required sum of 13.
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In a similar manner, begin by first selecting the largest numbered card in the set, 10.
When paired with the card numbered 10, the card numbered 3 gives a sum of 13.
Thus, (3, 10) is one pair that Silas may select.
As in part (a), if we increase the lower numbered card by 1 and decrease the higher
numbered card by 1, then we maintain a constant sum, 13.
This gives the pairs (4, 9), (5, 8), (6, 7).
We can not continue this process once we reach (6, 7) since the lower numbered card
would then become the higher (we would have the pair (7, 6)) and we need pairs (a, b)
where a < b.
Thus, there are exactly 4 pairs, (3, 10), (4, 9), (5, 8), (6, 7), that Silas may select.

Solution 2
If we let the smaller card be numbered a and the larger card be numbered b, then a+b = 13
or b = 13− a.
Since a < b, then a < 13− a or 2a < 13 and so a < 6.5.
Also, since b ≤ 10, then 13− a ≤ 10 or 3 ≤ a.
Since 3 ≤ a < 6.5, then the only possible values for a are 3, 4, 5, 6.
Thus, there are exactly 4 pairs, (3, 10), (4, 9), (5, 8), (6, 7), that Silas may select.

(c) If k ≤ 50, then the maximum sum of any pair is 49 + 50 = 99.
Therefore to achieve a sum of 100, it must be the case that k > 50.
If k = 51, then the pair (49, 51) has sum 100.
However, this is the only pair having sum 100.
If k = 52, then the pairs (49, 51) and (48, 52) both have sum 100, but these are the only
2 pairs that sum to 100.
Each time we increase k by 1 starting from 51, we obtain one additional pair whose sum is
100, because there is an additional value of b (the larger numbered card in the pair) that
can be used.
If k = 51 + 9 = 60, then we have the following ten pairs whose sum is 100:
(49, 51), (48, 52), (47, 53), (46, 54), (45, 55), (44, 56), (43, 57), (42, 58), (41, 59), (40, 60).
If we increase k again to k = 61, then an additional pair, (39, 61), increases the number
of pairs whose sum is 100 to 11.
Thus, Daniel must have a set of k = 60 cards numbered consecutively from 1 to 60.

(d) We show that the possible values of S are S = 67, 68, 84, 85.

Suppose that S is odd; that is, S = 2k + 1 for some integer k ≥ 0.
The pairs of positive integers (a, b) with a < b and a + b = S are

(1, 2k), (2, 2k − 1), (3, 2k − 2), . . . , (k − 1, k + 2), (k, k + 1)

(Since a < b, then a is less than half of S (or k + 1
2
) so the possible values of a are 1 to k.)

These pairs satisfy all of the requirements, except possibly the fact that a ≤ 75 and b ≤ 75.
Since a < b, then we only need to consider whether or not b ≤ 75.
If 2k ≤ 75, then each of these pairs is an allowable pair, and there are k such pairs.
For there to be 33 such pairs, we have k = 33, which gives S = 2(33) + 1 = 67.
If 2k > 75, then not all of these pairs are allowable pairs, as some have b values which are
too large.
Counting from the left, the first pair with an allowable b value has b = 75, which gives
a = S − 75 = (2k + 1)− 75 = 2k − 74.
This means that the allowable pairs are

(2k − 74, 75), (2k − 73, 74), . . . , (k − 1, k + 2), (k, k + 1)
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There are k − (2k − 74) + 1 = 75− k such pairs.
For there to be 33 such pairs, we have k = 42, which gives S = 2(42) + 1 = 85.
To summarize the case where S = 2k + 1 is odd, there are k allowable pairs when 2k ≤ 75
and 75− k allowable pairs when 2k > 75, giving possible values of S of 67 and 85.

Suppose that S is even; that is, S = 2k for some integer k ≥ 1.
The pairs of positive integers (a, b) with a < b and a + b = S are

(1, 2k − 1), (2, 2k − 2), (3, 2k − 3), . . . , (k − 2, k + 2), (k − 1, k + 1)

(Since a < b, then a is less than half of S (or k) so the possible values of a are 1 to k− 1.)
If 2k−1 ≤ 75, then each of these pairs is an allowable pair, and there are k−1 such pairs.
For there to be 33 such pairs, we have k = 34, which gives S = 2(34) = 68.
If 2k− 1 > 75, then not all of these pairs are allowable pairs, as some have b values which
are too large.
Counting from the left, the first pair with an allowable b value has b = 75, which gives
a = S − 75 = 2k − 75.
This means that the allowable pairs are

(2k − 75, 75), (2k − 74, 74), . . . , (k − 2, k + 2), (k − 1, k + 1)

There are (k − 1)− (2k − 75) + 1 = 75− k such pairs.
For there to be 33 such pairs, we have k = 42, which gives S = 2(42) = 84.
To summarize the case where S = 2k is even, there are k − 1 allowable pairs when
2k − 1 ≤ 75 and 75 − k allowable pairs when 2k − 1 > 75, giving possible values of S of
68 and 84.

Overall, the possible values of S are 67, 68, 84, and 85.

When S = 67, the 33 pairs are: (1, 66), (2, 65), (3, 64), . . . , (31, 36), (32, 35), (33, 34).
When S = 68, the 33 pairs are: (1, 67), (2, 66), (3, 65), . . . , (31, 37), (32, 36), (33, 35).
When S = 84, the 33 pairs are: (9, 75), (10, 74), (11, 73), . . . , (39, 45), (40, 44), (41, 43).
When S = 85, the 33 pairs are: (10, 75), (11, 74), (12, 73), . . . , (40, 45), (41, 44), (42, 43).

4. (a) As suggested, we begin by constructing the segment from O,
parallel to PQ, meeting CQ at R.
Both OP and CQ are perpendicular to PQ and since OR is
parallel to PQ, then OR is also perpendicular to OP and CQ.
That is, ORQP is a rectangle (it has 4 right angles).
The radius of the small circle is 2 and so OP = OT = 2 (since
both are radii).
The radius of the large circle is 5 and so CQ = CT = 5 (since
both are radii).

P Q

O

C
T

R

Since O, T, C are collinear with OT = 2 and CT = 5, then OC = OT + CT = 2 + 5 = 7.
In rectangle ORQP , RQ = OP = 2.
Therefore, CR = CQ−RQ = 5− 2 = 3.
In right-angled 4OCR, we have OC2 = CR2 + OR2 by the Pythagorean Theorem.
Thus, OR2 = OC2 − CR2 = 72 − 32 = 40, and so OR =

√
40 = 2

√
10 (since OR > 0).

Finally, PQ = OR = 2
√

10 (since ORQP is a rectangle).
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(b) Solution 1
Let the centres of the circles be A,B,C, as shown.
Let F be the point of tangency between the third circle
and the horizontal line.
As in part (a), we construct line segments AG and
BH parallel to DE and line segments AD,BF,CE
perpendicular to DE.
Label S and T , the points of tangency, so then A, S,B
are collinear as are B, T,C collinear.

D E

A B
C

F

G HS
T

Let the radius of the third circle be r so that BF = BS = BT = r.
The radius of the small circle is 4, so AS = AD = 4.
The radius of the large circle is 9, so CT = CE = 9.
Let DF = y. Then FE = DE −DF = 24− y.
As in part (a), GF = AD = 4 and DF = AG = y (since AGFD is a rectangle).
Similarly, HE = BF = r and BH = FE = 24− y (since BHEF is a rectangle).
In right-angled 4ABG, AB = AS + BS = 4 + r and BG = BF −GF = r − 4.
By the Pythagorean Theorem, AB2 = AG2 + BG2 or (4 + r)2 = y2 + (r − 4)2.
(Note that in the diagram we have assumed that r > 4, however if r < 4, then G would be
placed on AD such that AG = AD−GD = 4− r. In this case, we get AB2 = AG2 +BG2

or (4+r)2 = (4−r)2+y2. Since (4−r)2 = (r−4)2, the equation given by the Pythagorean
Theorem is not dependent on which of these two circles has a larger radius.)
In right-angled 4BCH, BC = BT + CT = r + 9 and CH = CE −HE = 9− r.
By the Pythagorean Theorem, BC2 = BH2 + CH2 or (r + 9)2 = (24 − y)2 + (9 − r)2.
(Note that in the diagram we have assumed that r < 9, however if r > 9, then H would be
placed on BF such that BH = BF −HF = r−9. In this case, we get BC2 = BH2+CH2

or (r + 9)2 = (9 − r)2 + (24 − y)2. Since (9 − r)2 = (r − 9)2, the equation given by the
Pythagorean Theorem is not dependent on which of these two circles has a larger radius.)

Next, we solve the system of equations

(4 + r)2 = y2 + (r − 4)2 (1)

(r + 9)2 = (24− y)2 + (9− r)2 (2)

Equation (1) becomes y2 = (4 + r)2 − (r − 4)2.
Expanding and simplifying we get y2 = 16 + 8r + r2 − r2 + 8r − 16 or y2 = 16r.
Equation (2) becomes (24− y)2 = (r + 9)2 − (9− r)2.
Instead of expanding, we can factor the right side as a difference of squares, so that
(24− y)2 = (r + 9 + 9− r)(r + 9− 9 + r) = (18)(2r) = 36r.
Thus the system of equations simplifies to

y2 = 16r (3)

(24− y)2 = 36r (4)

Since y2 = 16r = 4
9
(36r) = 4

9
(24− y)2, then y = ±2

3
(24− y).

Solving these two equations, y = 2
3
(24− y) and y = −2

3
(24− y), gives y = 48

5
or y = −48.

Since y > 0, then y = 48
5

.

Finally, we substitute y = 48
5

into (3) to get 16r =
(
48
5

)2
, so then r = 482

52
× 1

16
= 144

25
.

The radius of the third circle is 144
25

.
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Solution 2
Let the centres of the circles be A,B,C, as shown.
Let F be the point of tangency between the third circle
and the horizontal line.
As in part (a), we construct line segments AG and
BH parallel to DE and line segments AD,BF,CE
perpendicular to DE.
Label S and T , the points of tangency, so then A, S,B
are collinear as are B, T,C collinear.

D E

A B
C

F

G HS
T

We begin by considering the more general case in which we let the radius of the circle with
centre A be r1, the radius of the circle with centre B be r2, and the radius of the circle
with centre C be r3. (As was discussed in Solution 1, we may assume that r1 < r2 < r3.)
We then have AD = AS = r1, BS = BF = BT = r2, and CT = CE = r3.
As in part (a), GF = AD = r1 and DF = AG (since AGFD is a rectangle).
Similarly, HE = BF = r2 and BH = FE (since BHEF is a rectangle).
In right-angled 4ABG, AB = r1 + r2 and BG = BF −GF = r2 − r1.
By the Pythagorean Theorem, AG2 = AB2 −BG2 = (r1 + r2)

2 − (r2 − r1)
2.

Expanding and simplifying, we get

AG2 = r21 + 2r1r2 + r22 − r22 + 2r1r2 − r21
= 4r1r2

∴ AG = 2
√
r1r2 since AG > 0

Similarly, in right-angled 4BCH, BC = r2 + r3 and CH = CE −HE = r3 − r2.
By the Pythagorean Theorem, BH2 = BC2 − CH2 = (r2 + r3)

2 − (r3 − r2)
2.

Factoring the right side as a difference of squares, we get

BH2 = (r2 + r3 + r3 − r2)(r2 + r3 − r3 + r2)

= (2r3)(2r2)

= 4r2r3

∴ BH = 2
√
r2r3 since BH > 0

Thus DE = DF + FE = AG + BH = 2
√
r1r2 + 2

√
r2r3.

Given that DE = 24, r1 = 4 and r3 = 9, we substitute to get 24 = 2
√

4r2 + 2
√

9r2.
Simplifying, we get 12 =

√
4r2+

√
9r2 or 12 = 2

√
r2+3

√
r2 or 12 = 5

√
r2 and so

√
r2 = 12

5
.

Finally, we square both sides to get r2 = 122

52
= 144

25
.

Therefore, the radius of the third circle is 144
25

.
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(c) We begin by constructing line segments as in part (b), and label the diagram as shown.

KJIHGF

A B
C

T U

D

P Q
R

W

S

V
M

N

OY
Z

L

As we did in part (b) Solution 2, we can show that

FG = FD + DG = AT + BU = 2
√
r1r2 + 2

√
r2r3

HI = HS + SI = V Q + QW = 2
√
r1r2 + 2

√
r1r3

JK = JL + LK = MY + ZO = 2
√
r2r3 + 2

√
r1r3

(Note that we could show each of these results algebraically as we did in part (b), or
we could notice that the circles with centres P and Q have the same radii as those with
centres B and A respectively, and so PQ = AB or more importantly, V Q = AT .)

Since r2 < r3, then r1r2 < r1r3 and so 2
√
r1r2 < 2

√
r1r3.

Since r1 < r2, then r1r3 < r2r3 and so 2
√
r1r3 < 2

√
r2r3.

Let x =
√
r1r2, y =

√
r1r3 and z =

√
r2r3.

Then x < y < z.
Since y < z, then x + y < x + z so HI < FG.
Since x < y, then x + z < y + z so FG < JK.
Since the lengths of FG,HI, JK are 18, 20, 22 in some order and HI < FG < JK, then
HI = 18, FG = 20 and JK = 22.
Thus, our 3 equations become

2x + 2y = 18 x + y = 9 (1)

2x + 2z = 20 or x + z = 10 (2)

2z + 2y = 22 z + y = 11 (3)

Adding equations (1), (2), (3) we get 2(x + y + z) = 30, and so x + y + z = 15 (4).
Subtracting equation (1) from equation (4) gives z = (x + y + z)− (x + y) = 15− 9 = 6.
Similarly, subtracting each of the equations (2) and (3) from equation (4) in turn, we get
y = 5 and x = 4.
Since z = 6, then

√
r2r3 = 6 or r2r3 = 62.

Since y = 5, then
√
r1r3 = 5 or r1r3 = 52.

Since x = 4, then
√
r1r2 = 4 or r1r2 = 42.

Multiplying these 3 equations together gives r21r
2
2r

2
3 = 42 · 52 · 62 or (r1r2r3)

2 = (4 · 5 · 6)2

and so r1r2r3 = 4 · 5 · 6 = 120 (since r1, r2, r3 > 0).
Finally, dividing this equation by r2r3 = 62 gives r1 = r1r2r3

r2r3
= 120

62
= 10

3
.

Similarly, we get r2 = r1r2r3
r1r3

= 120
52

= 24
5

and r3 = r1r2r3
r1r2

= 120
42

= 15
2

.


